
Compatibility Definition

Android 8.1
Last updated: December 5, 2017

Copyright © 2017, Google Inc. All rights reserved.

1. Introduction
1.1 Document Structure

1.1.1. Requirements by Device Type
1.1.2. Requirement ID

2. Device Types
2.1 Device Configurations

2.2. Handheld Requirements
2.2.1. Hardware
2.2.2. Multimedia
2.2.3. Software
2.2.4. Performance and Power
2.2.5. Security Model

2.3. Television Requirements
2.3.1. Hardware
2.3.2. Multimedia
2.3.3. Software
2.2.4. Performance and Power

2.4. Watch Requirements
2.4.1. Hardware
2.4.2. Multimedia
2.4.3. Software

2.5. Automotive Requirements
2.5.1. Hardware
2.5.2. Multimedia
2.5.3. Software
2.2.4. Performance and Power
2.2.5. Security Model

2.6. Tablet Requirements
2.4.1. Hardware

3. Software
3.1. Managed API Compatibility

3.1.1. Android Extensions

3.2. Soft API Compatibility
3.2.1. Permissions

3.2.2. Build Parameters
3.2.3. Intent Compatibility

3.2.3.1. Core Application Intents
3.2.3.2. Intent Resolution
3.2.3.3. Intent Namespaces
3.2.3.4. Broadcast Intents
3.2.3.5. Default App Settings

3.2.4. Activities on secondary displays

3.3. Native API Compatibility
3.3.1. Application Binary Interfaces
3.3.2. 32-bit ARM Native Code Compatibility

3.4. Web Compatibility
3.4.1. WebView Compatibility
3.4.2. Browser Compatibility

3.5. API Behavioral Compatibility

3.6. API Namespaces

3.7. Runtime Compatibility

3.8. User Interface Compatibility
3.8.1. Launcher (Home Screen)
3.8.2. Widgets
3.8.3. Notifications

3.8.3.1. Presentation of Notifications
3.8.3.2. Notification Listener Service
3.8.3.3. DND (Do not Disturb)

3.8.4. Search
3.8.5. Alerts and Toasts
3.8.6. Themes
3.8.7. Live Wallpapers
3.8.8. Activity Switching
3.8.9. Input Management
3.8.10. Lock Screen Media Control
3.8.11. Screen savers (previously Dreams)
3.8.12. Location
3.8.13. Unicode and Font

Table of Contents

Page 2 of 122

3.8.14. Multi-windows

3.9. Device Administration
3.9.1 Device Provisioning

3.9.1.1 Device owner provisioning
3.9.1.2 Managed profile provisioning

3.9.2 Managed Profile Support

3.10. Accessibility

3.11. Text-to-Speech

3.12. TV Input Framework
3.12.1. TV App

3.12.1.1. Electronic Program Guide
3.12.1.2. Navigation
3.12.1.3. TV input app linking
3.12.1.4. Time shifting
3.12.1.5. TV recording

3.13. Quick Settings

3.14. Media UI

3.15. Instant Apps

3.16. Companion Device Pairing

4. Application Packaging Compatibility
5. Multimedia Compatibility

5.1. Media Codecs
5.1.1. Audio Encoding
5.1.2. Audio Decoding
5.1.3. Audio Codecs Details
5.1.4. Image Encoding
5.1.5. Image Decoding
5.1.6. Image Codecs Details
5.1.7. Video Codecs
5.1.8. Video Codecs List

5.2. Video Encoding
5.2.1. H.263
5.2.2. H-264
5.2.3. VP8

5.2.4. VP9

5.3. Video Decoding
5.3.1. MPEG-2
5.3.2. H.263
5.3.3. MPEG-4
5.3.4. H.264
5.3.5. H.265 (HEVC)
5.3.6. VP8
5.3.7. VP9

5.4. Audio Recording
5.4.1. Raw Audio Capture
5.4.2. Capture for Voice Recognition
5.4.3. Capture for Rerouting of Playback

5.5. Audio Playback
5.5.1. Raw Audio Playback
5.5.2. Audio Effects
5.5.3. Audio Output Volume

5.6. Audio Latency

5.7. Network Protocols

5.8. Secure Media

5.9. Musical Instrument Digital Interface
(MIDI)

5.10. Professional Audio

5.11. Capture for Unprocessed

6. Developer Tools and Options
Compatibility

6.1. Developer Tools

6.2. Developer Options

7. Hardware Compatibility
7.1. Display and Graphics

7.1.1. Screen Configuration
7.1.1.1. Screen Size
7.1.1.2. Screen Aspect Ratio
7.1.1.3. Screen Density

7.1.2. Display Metrics
7.1.3. Screen Orientation

Page 3 of 122

7.1.4. 2D and 3D Graphics Acceleration
7.1.4.1 OpenGL ES
7.1.4.2 Vulkan
7.1.4.3 RenderScript
7.1.4.4 2D Graphics Acceleration
7.1.4.5 Wide-gamut Displays

7.1.5. Legacy Application Compatibility Mode
7.1.6. Screen Technology
7.1.7. Secondary Displays

7.2. Input Devices
7.2.1. Keyboard
7.2.2. Non-touch Navigation
7.2.3. Navigation Keys
7.2.4. Touchscreen Input
7.2.5. Fake Touch Input
7.2.6. Game Controller Support

7.2.6.1. Button Mappings

7.2.7. Remote Control

7.3. Sensors
7.3.1. Accelerometer
7.3.2. Magnetometer
7.3.3. GPS
7.3.4. Gyroscope
7.3.5. Barometer
7.3.6. Thermometer
7.3.7. Photometer
7.3.8. Proximity Sensor
7.3.9. High Fidelity Sensors
7.3.10. Fingerprint Sensor
7.3.11. Android Automotive-only sensors

7.3.11.1. Current Gear
7.3.11.2. Day Night Mode
7.3.11.3. Driving Status
7.3.11.4. Wheel Speed

7.3.12. Pose Sensor

7.4. Data Connectivity
7.4.1. Telephony

7.4.1.1. Number Blocking Compatibility
7.4.1.2. Telecom API

7.4.2. IEEE 802.11 (Wi-Fi)
7.4.2.1. Wi-Fi Direct
7.4.2.2. Wi-Fi Tunneled Direct Link Setup
7.4.2.3. Wi-Fi Aware
7.4.2.4. Wi-Fi Passpoint

7.4.3. Bluetooth
7.4.4. Near-Field Communications
7.4.5. Minimum Network Capability
7.4.6. Sync Settings
7.4.7. Data Saver

7.5. Cameras
7.5.1. Rear-Facing Camera
7.5.2. Front-Facing Camera
7.5.3. External Camera
7.5.4. Camera API Behavior
7.5.5. Camera Orientation

7.6. Memory and Storage
7.6.1. Minimum Memory and Storage
7.6.2. Application Shared Storage
7.6.3. Adoptable Storage

7.7. USB
7.7.1. USB peripheral mode
7.7.2. USB host mode

7.8. Audio
7.8.1. Microphone
7.8.2. Audio Output

7.8.2.1. Analog Audio Ports

7.8.3. Near-Ultrasound

7.9. Virtual Reality

Page 4 of 122

7.9.1. Virtual Reality Mode
7.9.2. Virtual Reality High Performance

8. Performance and Power
8.1. User Experience Consistency

8.2. File I/O Access Performance

8.3. Power-Saving Modes

8.4. Power Consumption Accounting

8.5. Consistent Performance

9. Security Model Compatibility
9.1. Permissions

9.2. UID and Process Isolation

9.3. Filesystem Permissions

9.4. Alternate Execution Environments

9.5. Multi-User Support

9.6. Premium SMS Warning

9.7. Kernel Security Features

9.8. Privacy
9.8.1. Usage History
9.8.2. Recording
9.8.3. Connectivity
9.8.4. Network Traffic

9.9. Data Storage Encryption
9.9.1. Direct Boot
9.9.2. File Based Encryption
9.9.3. Full Disk Encryption

9.10. Device Integrity

9.11. Keys and Credentials
9.11.1. Secure Lock Screen

9.12. Data Deletion

9.13. Safe Boot Mode

9.14. Automotive Vehicle System Isolation

10. Software Compatibility Testing
10.1. Compatibility Test Suite

10.2. CTS Verifier

11. Updatable Software
12. Document Changelog

12.1. Changelog Viewing Tips

13. Contact Us

Page 5 of 122

1. Introduction

This document enumerates the requirements that must be met in order for devices to be compatible
with Android 8.1.
The use of “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD
NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” is per the IETF standard defined in RFC2119 .
As used in this document, a “device implementer” or “implementer” is a person or organization
developing a hardware/software solution running Android 8.1. A “device implementation” or
“implementation is the hardware/software solution so developed.
To be considered compatible with Android 8.1, device implementations MUST meet the requirements
presented in this Compatibility Definition, including any documents incorporated via reference.
Where this definition or the software tests described in section 10 is silent, ambiguous, or incomplete,
it is the responsibility of the device implementer to ensure compatibility with existing implementations.
For this reason, the Android Open Source Project is both the reference and preferred implementation
of Android. Device implementers are STRONGLY RECOMMENDED to base their implementations to
the greatest extent possible on the “upstream” source code available from the Android Open Source
Project. While some components can hypothetically be replaced with alternate implementations, it is
STRONGLY RECOMMENDED to not follow this practice, as passing the software tests will become
substantially more difficult. It is the implementer’s responsibility to ensure full behavioral compatibility
with the standard Android implementation, including and beyond the Compatibility Test Suite. Finally,
note that certain component substitutions and modifications are explicitly forbidden by this document.
Many of the resources linked to in this document are derived directly or indirectly from the Android
SDK and will be functionally identical to the information in that SDK’s documentation. In any cases
where this Compatibility Definition or the Compatibility Test Suite disagrees with the SDK
documentation, the SDK documentation is considered authoritative. Any technical details provided in
the linked resources throughout this document are considered by inclusion to be part of this
Compatibility Definition.

1.1 Document Structure

1.1.1. Requirements by Device Type

Section 2 contains all the MUST and STRONGLY RECOMMENDED requirements that apply to a
specific device type. Each subsection of Section 2 is dedicated to a specific device type.
All the other requirements, that universally apply to any Android device implementations, are listed in
the sections after Section 2 . These requirements are referenced as "Core Requirements" in this
document.

1.1.2. Requirement ID

Requirement ID is assigned for MUST requirements.

The ID is assigned for MUST requirements only.
STRONGLY RECOMMENDED requirements are marked as [SR] but ID is not assigned.
The ID consists of : Device Type ID - Condition ID - Requirement ID (e.g. C-0-1).

Each ID is defined as below:

Device Type ID (see more on 2. Device Types
C: Core (Requirements that are applied to any Android device
implementations)

Page 6 of 122

http://www.ietf.org/rfc/rfc2119.txt
http://source.android.com/

H: Android Handheld device
T: Android Television device
A: Android Automotive implementation

Condition ID
When the requirement is unconditional, this ID is set as 0.
When the requirement is conditional, 1 is assinged for the 1st condition and the
number increments by 1 within the same section and the same device type.

Requirement ID
This ID starts from 1 and increments by 1 within the same section and the
same condition.

2. Device Types

While the Android Open Source Project provides a software stack that can be used for a variety of
device types and form factors, there are a few device types that have a relatively better established
application distribution ecosystem.
This section describes those device types, and additional requirements and recommendations
applicable for each device type.
All Android device implementations that do not fit into any of the described device types MUST still
meet all requirements in the other sections of this Compatibility Definition.

2.1 Device Configurations

For the major differences in hardware configuration by device type, see the device-specific
requirements that follow in this section.

2.2. Handheld Requirements

An Android Handheld device refers to an Android device implementation that is typically used by
holding it in the hand, such as an mp3 player, phone, or tablet.
Android device implementations are classified as a Handheld if they meet all the following criteria:

Have a power source that provides mobility, such as a battery.
Have a physical diagonal screen size in the range of 2.5 to 8 inches.

The additional requirements in the rest of this section are specific to Android Handheld device
implementations.

Note: Requirements that do not apply to Android Tablet devices are marked with an *.

2.2.1. Hardware

Screen Size (Section 7.1.1.1)
Handheld device implementations:

[H-0-1] MUST have a screen at least 2.5 inches in physical diagonal size. *

Screen Density (Section 7.1.1.3)
Handheld device implementations:

[H-SR] Are STRONGLY RECOMMENDED to provide users an affordance to change the

Page 7 of 122

display size.

Legacy Application Compatibility Mode (Section 7.1.5)
Handheld device implementations:

[H-0-1] MUST include support for legacy application compatibility mode as implemented by
the upstream Android open source code. That is, device implementations MUST NOT alter
the triggers or thresholds at which compatibility mode is activated, and MUST NOT alter
the behavior of the compatibility mode itself.

Keyboard (Section 7.2.1)
Handheld device implementations:

[H-0-1] MUST include support for third-party Input Method Editor (IME) applications.

Navigation Keys (Section 7.2.3)
Handheld device implementations:

[H-0-1] MUST provide the Home, Recents, and Back functions.

[H-0-2] MUST send both the normal and long press event of the the Back function (
KEYCODE_BACK) to the foreground application.

Touchscreen Input (Section 7.2.4)
Handheld device implementations:

[H-0-1] MUST support touchscreen input.

Accelerometer (Section 7.3.1)
Handheld device implementations:

[H-SR] Are STRONGLY RECOMMENDED to include a 3-axis accelerometer.

If Handheld device implementations include a 3-axis accelerometer, they:

[H-1-1] MUST be able to report events up to a frequency of at least 100 Hz.

Gyroscope (Section 7.3.4)
If Handheld device implementations include a gyroscope, they:

[H-1-1] MUST be able to report events up to a frequency of at least 100 Hz.

Proximity Sensor (Section 7.3.8)
Handheld device implementations that can make a voice call and indicate any value other than
PHONE_TYPE_NONE in getPhoneType :

SHOULD include a proximity sensor.

Pose Sensor (Section 7.3.12)
Handheld device implementations:

Are RECOMMENDED to support pose sensor with 6 degrees of freedom.

Page 8 of 122

http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BACK

Bluetooth (Section 7.4.3)
Handheld device implementations:

SHOULD include support for Bluetooth and Bluetooth LE.

Data Saver (Section 7.4.7)
If Handheld device implementations include a metered connection, they:

[H-1-1] MUST provide the data saver mode.

Minimum Memory and Storage (Section 7.6.1)
If Handheld device implementations declare support of only a 32-bit ABI:

[H-1-1] The memory available to the kernel and userspace MUST be at least 416MB if the
default display uses framebuffer resolutions up to qHD (e.g. FWVGA).

[H-2-1] The memory available to the kernel and userspace MUST be at least 592MB if the
default display uses framebuffer resolutions up to HD+ (e.g. HD, WSVGA).

[H-3-1] The memory available to the kernel and userspace MUST be at least 896MB if the
default display uses framebuffer resolutions up to FHD (e.g. WSXGA+).

[H-4-1] The memory available to the kernel and userspace MUST be at least 1344MB if
the default display uses framebuffer resolutions up to QHD (e.g. QWXGA).

If Handheld device implementations declare support of 32-bit and 64-bit ABIs:

[H-5-1] The memory available to the kernel and userspace MUST be at least 816MB if the
default display uses framebuffer resolutions up to qHD (e.g. FWVGA).

[H-6-1] The memory available to the kernel and userspace MUST be at least 944MB if the
default display uses framebuffer resolutions up to HD+ (e.g. HD, WSVGA).

[H-7-1] The memory available to the kernel and userspace MUST be at least 1280MB if
the default display uses framebuffer resolutions up to FHD (e.g. WSXGA+).

[H-8-1] The memory available to the kernel and userspace MUST be at least 1824MB if
the default display uses framebuffer resolutions up to QHD (e.g. QWXGA).

Note that the "memory available to the kernel and userspace" above refers to the memory space
provided in addition to any memory already dedicated to hardware components such as radio, video,
and so on that are not under the kernel’s control on device implementations.
If Handheld device implementations include less than or equal to 1GB of memory available to the
kernel and userspace, they:

[H-9-1] MUST declare the feature flag android.hardware.ram.low .
[H-9-2] MUST have at least 1.1 GB of non-volatile storage for application private data
(a.k.a. "/data" partition).

If Handheld device implementations include more than 1GB of memory available to the kernel and
userspace, they:

[H-10-1] MUST have at least 4GB of non-volatile storage available for application private
data (a.k.a. "/data" partition).
SHOULD declare the feature flag android.hardware.ram.normal .

Page 9 of 122

https://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_RAM_LOW
https://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_RAM_NORMAL

Application Shared Storage (Section 7.6.2)
Handheld device implementations:

[H-0-1] MUST NOT provide an application shared storage smaller than 1 GiB.

USB peripheral mode (Section 7.7.1)
Handheld device implementations:

SHOULD include a USB port supporting peripheral mode.

If handheld device implementations include a USB port supporting peripheral mode, they:

[H-1-1] MUST implement the Android Open Accessory (AOA) API. *

Microphone (Section 7.8.1)
Handheld device implementations:

[H-0-1] MUST include a microphone.

Audio Output (Section 7.8.2)
Handheld device implementations:

[H-0-1] MUST have an audio output and declare android.hardware.audio.output .

Virtual Reality Mode (Section 7.9.1)
If Handheld device implementations include support for the VR mode, they:

[H-1-1] MUST declare the android.software.vr.mode feature. *

If device implementations declare android.software.vr.mode feature, they:

[H-2-1] MUST include an application implementing android.service.vr.VrListenerService that
can be enabled by VR applications via android.app.Activity#setVrModeEnabled . *

Virtual Reality High Performance (Section 7.9.2)
If Handheld device implementations are capable of meeting all the requirements to declare the
android.hardware.vr.high_performance feature flag, they:

[H-1-1] MUST declare the android.hardware.vr.high_performance feature flag. *

2.2.2. Multimedia

Audio Encoding (Section 5.1.1)
Handheld device implementations MUST support the following audio encoding:

[H-0-1] AMR-NB
[H-0-2] AMR-WB
[H-0-3] MPEG-4 AAC Profile (AAC LC)
[H-0-4] MPEG-4 HE AAC Profile (AAC+)
[H-0-5] AAC ELD (enhanced low delay AAC)

Page 10 of 122

Audio Decoding (Section 5.1.2)
Handheld device implementations MUST support the following audio decoding:

[H-0-1] AMR-NB
[H-0-2] AMR-WB

Video Encoding (Section 5.2)
Handheld device implementations MUST support the following video encoding and make it available
to third-party applications:

[H-0-1] H.264 AVC
[H-0-2] VP8

Video Decoding (Section 5.3)
Handheld device implementations MUST support the following video decoding:

[H-0-1] H.264 AVC.
[H-0-2] H.265 HEVC.
[H-0-3] MPEG-4 SP.
[H-0-4] VP8.
[H-0-5] VP9.

2.2.3. Software

WebView Compatibility (Section 3.4.1)
Handheld device implementations:

[H-0-1] MUST provide a complete implementation of the android.webkit.Webview API.

Browser Compatibility (Section 3.4.2)
Handheld device implementations:

[H-0-1] MUST include a standalone Browser application for general user web browsing.

Launcher (Section 3.8.1)
Handheld device implementations:

[H-SR] Are STRONGLY RECOMMENDED to implement a default launcher that supports
in-app pinning of shortcuts and widgets.

[H-SR] Are STRONGLY RECOMMENDED to implement a default launcher that provides
quick access to the additional shortcuts provided by third-party apps through the
ShortcutManager API.

[H-SR] Are STRONGLY RECOMMENDED to include a default launcher app that shows
badges for the app icons.

Widgets (Section 3.8.2)
Handheld device implementations:

[H-SR] Are STRONGLY RECOMMENDED to support third-party app widgets.

Page 11 of 122

https://developer.android.com/reference/android/content/pm/ShortcutManager.html

Notifications (Section 3.8.3)
Handheld device implementations:

[H-0-1] MUST allow third-party apps to notify users of notable events through the
Notification and NotificationManager API classes.
[H-0-2] MUST support rich notifications.
[H-0-3] MUST support heads-up notifications.
[H-0-4] MUST include a notification shade, providing the user the ability to directly control
(e.g. reply, snooze, dismiss, block) the notifications through user affordance such as action
buttons or the control panel as implemented in the AOSP.

Search (Section 3.8.4)
Handheld device implementations:

[H-SR] Are STRONGLY RECOMMENDED to implement an assistant on the device to
handle the Assist action .

Lock Screen Media Control (Section 3.8.10)
If Android Handheld device implementations support a lock screen,they:

[H-1-1] MUST display the Lock screen Notifications including the Media Notification
Template.

Device administration (Section 3.9)
If Handheld device implementations support a secure lock screen, they:

[H-1-1] MUST implement the full range of device administration policies defined in the
Android SDK documentation.

Accessibility (Section 3.10)
Handheld device implementations:

[H-SR] MUST support third-party accessibility services.

[H-SR] Are STRONGLY RECOMMENDED to preload accessibility services on the device
comparable with or exceeding functionality of the Switch Access and TalkBack (for
languages supported by the preloaded Text-to-speech engine) accessibility services as
provided in the talkback open source project .

Text-to-Speech (Section 3.11)
Handheld device implementations:

[H-0-1] MUST support installation of third-party TTS engines.

[H-SR] Are STRONGLY RECOMMENDED to include a TTS engine supporting the
languages available on the device.

Quick Settings (Section 3.13)
Handheld device implementations:

[H-SR] Are STRONGLY RECOMMENDED to include a Quick Settings UI component.

Companion Device Pairing (Section 3.15)

Page 12 of 122

https://developer.android.com/reference/android/app/Notification.html
https://developer.android.com/reference/android/app/NotificationManager.html
http://developer.android.com/reference/android/content/Intent.html#ACTION_ASSIST
http://developer.android.com/guide/topics/admin/device-admin.html
https://github.com/google/talkback

If Android handheld device implementations declare FEATURE_BLUETOOTH or FEATURE_WIFI
support, they:

[H-1-1] MUST support the companion device pairing feature.

2.2.4. Performance and Power

User Experience Consistency (Section 8.1)
For handheld device implementations:

[H-0-1] Consistent frame latency . Inconsistent frame latency or a delay to render frames
MUST NOT happen more often than 5 frames in a second, and SHOULD be below 1
frames in a second.
[H-0-2] User interface latency . Device implementations MUST ensure low latency user
experience by scrolling a list of 10K list entries as defined by the Android Compatibility
Test Suite (CTS) in less than 36 secs.
[H-0-3] Task switching . When multiple applications have been launched, re-launching an
already-running application after it has been launched MUST take less than 1 second.

File I/O Access Performance (Section 8.2)
Handheld device implementations:

[H-0-1] MUST ensure a sequential write performance of at least 5 MB/s.
[H-0-2] MUST ensure a random write performance of at least 0.5 MB/s.
[H-0-3] MUST ensure a sequential read performance of at least 15 MB/s.
[H-0-4] MUST ensure a random read performance of at least 3.5 MB/s.

Power-Saving Modes (Section 8.3)
For handheld device implementations:

[H-0-1] All Apps exempted from App Standby and Doze power-saving modes MUST be
made visible to the end user.
[H-0-2] The triggering, maintenance, wakeup algorithms and the use of global system
settings of App Standby and Doze power-saving modes MUST not deviate from the
Android Open Source Project.

Power Consumption Accounting (Sections 8.4)
Handheld device implementations:

[H-0-1] MUST provide a per-component power profile that defines the current consumption
value for each hardware component and the approximate battery drain caused by the
components over time as documented in the Android Open Source Project site.
[H-0-2] MUST report all power consumption values in milliampere hours (mAh).
[H-0-3] MUST report CPU power consumption per each process's UID. The Android Open
Source Project meets the requirement through the uid_cputime kernel module
implementation.
[H-0-4] MUST make this power usage available via the adb shell dumpsys batterystats shell
command to the app developer.
SHOULD be attributed to the hardware component itself if unable to attribute hardware
component power usage to an application.

If Handheld device implementations include a screen or video output, they:

Page 13 of 122

http://source.android.com/devices/tech/power/values.html
http://source.android.com/devices/tech/power/batterystats.html

[H-1-1] MUST honor the android.intent.action.POWER_USAGE_SUMMARY intent and
display a settings menu that shows this power usage.

2.2.5. Security Model

Permissions (Sections 9.1)
Handheld device implementations:

[H-0-1] MUST allow third-party apps to access the usage statistics via the
android.permission.PACKAGE_USAGE_STATS permission and provide a user-accessible
mechanism to grant or revoke access to such apps in response to the
android.settings.ACTION_USAGE_ACCESS_SETTINGS intent.

2.3. Television Requirements

An Android Television device refers to an Android device implementation that is an entertainment
interface for consuming digital media, movies, games, apps, and/or live TV for users sitting about ten
feet away (a “lean back” or “10-foot user interface”).
Android device implementations are classified as a Television if they meet all the following criteria:

Have provided a mechanism to remotely control the rendered user interface on the display
that might sit ten feet away from the user.
Have an embedded screen display with the diagonal length larger than 24 inches OR
include a video output port, such as VGA, HDMI, DisplayPort or a wireless port for display.

The additional requirements in the rest of this section are specific to Android Television device
implementations.

2.3.1. Hardware

Non-touch Navigation (Section 7.2.2)
Television device implementations:

[T-0-1] MUST support D-pad .

Navigation Keys (Section 7.2.3)
Television device implementations:

[T-0-1] MUST provide the Home and Back functions.
[T-0-2] MUST send both the normal and long press event of the the Back function (
KEYCODE_BACK) to the foreground application.

Button Mappings (Section 7.2.6.1)
Television device implementations:

[T-0-1] MUST include support for game controllers and declare the
android.hardware.gamepad feature flag.

Remote Control (Section 7.2.7)
Television device implementations:

SHOULD provide a remote control from which users can access non-touch navigation and

Page 14 of 122

http://developer.android.com/reference/android/content/Intent.html#ACTION_POWER_USAGE_SUMMARY
https://developer.android.com/reference/android/provider/Settings.html#ACTION_USAGE_ACCESS_SETTINGS
https://developer.android.com/reference/android/content/res/Configuration.html#NAVIGATION_DPAD
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BACK

core navigation keys inputs.

Gyroscope (Section 7.3.4)
If Television device implementations include a gyroscope, they:

[T-1-1] MUST be able to report events up to a frequency of at least 100 Hz.

Bluetooth (Section 7.4.3)
Television device implementations:

[T-0-1] MUST support Bluetooth and Bluetooth LE.

Minimum Memory and Storage (Section 7.6.1)
Television device implementations:

[T-0-1] MUST have at least 4GB of non-volatile storage available for application private
data (a.k.a. "/data" partition)
[T-0-2] MUST return “true” for ActivityManager.isLowRamDevice() when there is less than
1GB of memory available to the kernel and userspace.

Microphone (Section 7.8.1)
Television device implementations:

SHOULD include a microphone.

Audio Output (Section 7.8.2)
Television device implementations:

[T-0-1] MUST have an audio output and declare android.hardware.audio.output .

2.3.2. Multimedia

Audio Encoding (Section 5.1)
Television device implementations MUST support the following audio encoding:

[T-0-1] MPEG-4 AAC Profile (AAC LC)
[T-0-2] MPEG-4 HE AAC Profile (AAC+)
[T-0-3] AAC ELD (enhanced low delay AAC)

Video Encoding (Section 5.2)
Television device implementations MUST support the following video encoding:

[T-0-1] H.264 AVC
[T-0-2] VP8

H-264 (Section 5.2.2)
Television device implementations are:

[T-SR] STRONGLY RECOMMENDED to support H.264 encoding of 720p and 1080p
resolution videos.
[T-SR] STRONGLY RECOMMENDED to support H.264 encoding of 1080p resolution
video at 30 frame-per-second (fps).

Page 15 of 122

Video Decoding (Section 5.3)
Television device implementations MUST support the following video decoding:

[T-0-1] H.264 AVC
[T-0-2] H.265 HEVC
[T-0-3] MPEG-4 SP
[T-0-4] VP8
[T-0-5] VP9

Television device implementations are STRONGLY RECOMMENDED to support the following video
decoding:

[T-SR] MPEG-2

H.264 (Section 5.3.4)
If Television device implementations support H.264 decoders, they:

[T-1-1] MUST support High Profile Level 4.2 and the HD 1080p (at 60 fps) decoding
profile.
[T-1-2] MUST be capable of decoding videos with both HD profiles as indicated in the
following table and encoded with either the Baseline Profile, Main Profile, or the High
Profile Level 4.2

H.265 (HEVC) (Section 5.3.5)
If Television device implementations support H.265 codec and the HD 1080p decoding profile, they:

[T-1-1] MUST support the Main Profile Level 4.1 Main tier.
[T-SR] Are STRONGLY RECOMMENDED to support 60 fps video frame rate for HD
1080p.

If Television device implementations support H.265 codec and the UHD decoding profile, then:

[T-2-1] The codec MUST support Main10 Level 5 Main Tier profile.

VP8 (Section 5.3.6)
If Television device implementations support VP8 codec, they:

[T-1-1] MUST support the HD 1080p60 decoding profile.

If Television device implementations support VP8 codec and support 720p, they:

[T-2-1] MUST support the HD 720p60 decoding profile.

VP9 (Section 5.3.7)
If Television device implementations support VP9 codec and the UHD video decoding, they:

[T-1-1] MUST support 8-bit color depth and SHOULD support VP9 Profile 2 (10-bit).

If Television device implementations support VP9 codec, the 1080p profile and VP9 hardware
decoding, they:

Page 16 of 122

[T-2-1] MUST support 60 fps for 1080p.

Secure Media (Section 5.8)
If device implementations are Android Television devices and support 4K resolution, they:

[T-1-1] MUST support HDCP 2.2 for all wired external displays.

If Television device implementations don't support 4K resolution, they:

[T-2-1] MUST support HDCP 1.4 for all wired external displays.

Television device implementations:

[T-SR] Are STRONGLY RECOMMENDED to support simulataneous decoding of secure
streams. At minimum, simultaneous decoding of two steams is STRONGLY
RECOMMENDED.

Audio Output Volume (Section 5.5.3)
Television device implementations:

[T-0-1] MUST include support for system Master Volume and digital audio output volume
attenuation on supported outputs, except for compressed audio passthrough output (where
no audio decoding is done on the device).

2.3.3. Software

Television device implementations:

[T-0-1] MUST declare the features android.software.leanback and
android.hardware.type.television .

WebView compatibility (Section 3.4.1)
Television device implementations:

[T-0-1] MUST provide a complete implementation of the android.webkit.Webview API.

Lock Screen Media Control (Section 3.8.10)
If Android Television device implementations support a lock screen,they:

[T-1-1] MUST display the Lock screen Notifications including the Media Notification
Template.

Multi-windows (Section 3.8.14)
Television device implementations:

[T-SR] Are STRONGLY RECOMMENDED to support picture-in-picture (PIP) mode multi-
window.

Accessibility (Section 3.10)
Television device implementations:

[T-SR] MUST support third-party accessibility services.

Page 17 of 122

http://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_LEANBACK

[T-SR] Android Television device implementations are STRONGLY RECOMMENDED to
preload accessibility services on the device comparable with or exceeding functionality of
the Switch Access and TalkBack (for languages supported by the preloaded Text-to-
speech engine) accessibility services as provided in the talkback open source project .

Text-to-Speech (Section 3.11)
If device implementations report the feature android.hardware.audio.output, they:

[T-SR] STRONGLY RECOMMENDED to include a TTS engine supporting the languages
available on the device.

[T-0-1] MUST support installation of third-party TTS engines.

TV Input Framework (Section 3.12)
Television device implementations:

[T-0-1] MUST support TV Input Framework.

2.2.4. Performance and Power

User Experience Consistency (Section 8.1)
For Television device implementations:

[T-0-1] Consistent frame latency . Inconsistent frame latency or a delay to render frames
MUST NOT happen more often than 5 frames in a second, and SHOULD be below 1
frames in a second.

File I/O Access Performance (Section 8.2)
Television device implementations:

[T-0-1] MUST ensure a sequential write performance of at least 5MB/s.
[T-0-2] MUST ensure a random write performance of at least 0.5MB/s.
[T-0-3] MUST ensure a sequential read performance of at least 15MB/s.
[T-0-4] MUST ensure a random read performance of at least 3.5MB/s.

Power-Saving Modes (Section 8.3)
For Television device implementations:

[T-0-1] All Apps exempted from App Standby and Doze power-saving modes MUST be
made visible to the end user.
[T-0-2] The triggering, maintenance, wakeup algorithms and the use of global system
settings of App Standby and Doze power-saving modes MUST not deviate from the
Android Open Source Project.

Power Consumption Accounting (Sections 8.4)
Television device implementations:

[T-0-1] MUST provide a per-component power profile that defines the current consumption
value for each hardware component and the approximate battery drain caused by the
components over time as documented in the Android Open Source Project site.
[T-0-2] MUST report all power consumption values in milliampere hours (mAh).
[T-0-3] MUST report CPU power consumption per each process's UID. The Android Open

Page 18 of 122

https://github.com/google/talkback
http://source.android.com/devices/tech/power/values.html

Source Project meets the requirement through the uid_cputime kernel module
implementation.
SHOULD be attributed to the hardware component itself if unable to attribute hardware
component power usage to an application.
[T-0-4] MUST make this power usage available via the adb shell dumpsys batterystats shell
command to the app developer.

2.4. Watch Requirements

An Android Watch device refers to an Android device implementation intended to be worn on the
body, perhaps on the wrist.
Android device implementations are classified as a Watch if they meet all the following criteria:

Have a screen with the physical diagonal length in the range from 1.1 to 2.5 inches.
Have a mechanism provided to be worn on the body.

The additional requirements in the rest of this section are specific to Android Watch device
implementations.

2.4.1. Hardware

Screen Size (Section 7.1.1.1)
Watch device implementations:

[W-0-1] MUST have a screen with the physical diagonal size in the range from 1.1 to 2.5
inches.

Navigation Keys (Section 7.2.3)
Watch device implementations:

[W-0-1] MUST have the Home function available to the user, and the Back function except
for when it is in UI_MODE_TYPE_WATCH .

Touchscreen Input (Section 7.2.4)
Watch device implementations:

[W-0-2] MUST support touchscreen input.

Accelerometer (Section 7.3.1)
Watch device implementations:

[W-SR] Are STRONGLY RECOMMENDED to include a 3-axis accelerometer.

Bluetooth (Section 7.4.3)
Watch device implementations:

[W-0-1] MUST support Bluetooth.

Minimum Memory and Storage (Section 7.6.1)
Watch device implementations:

[W-0-1] MUST have at least 1GB of non-volatile storage available for application private

Page 19 of 122

http://source.android.com/devices/tech/power/batterystats.html

data (a.k.a. "/data" partition)
[W-0-2] MUST have at least 416MB memory available to the kernel and userspace.

Microphone (Section 7.8.1)
Watch device implementations:

[W-0-1] MUST include a microphone.

Audio Output (Section 7.8.1)
Watch device implementations:

MAY but SHOULD NOT have audio output.

2.4.2. Multimedia

No additional requirements.

2.4.3. Software

Watch device implementations:

[W-0-1] MUST declare the feature android.hardware.type.watch.
[W-0-2] MUST support uiMode = UI_MODE_TYPE_WATCH .

Search (Section 3.8.4)
Watch device implementations:

[W-SR] Are STRONGLY RECOMMENDED to implement an assistant on the device to
handle the Assist action .

Accessibility (Section 3.10)
Watch device implementations that declare the android.hardware.audio.output feature flag:

[W-1-1] MUST support third-party accessibility services.

[W-SR] Are STRONGLY RECOMMENDED to preload accessibility services on the device
comparable with or exceeding functionality of the Switch Access and TalkBack (for
languages supported by the preloaded Text-to-speech engine) accessibility services as
provided in the talkback open source project .

Text-to-Speech (Section 3.11)
If Watch device implementations report the feature android.hardware.audio.output, they:

[W-SR] Are STRONGLY RECOMMENDED to include a TTS engine supporting the
languages available on the device.

[W-0-1] MUST support installation of third-party TTS engines.

2.5. Automotive Requirements

Android Automotive implementation refers to a vehicle head unit running Android as an operating
system for part or all of the system and/or infotainment functionality.

Page 20 of 122

http://developer.android.com/reference/android/content/res/Configuration.html#UI_MODE_TYPE_WATCH
http://developer.android.com/reference/android/content/Intent.html#ACTION_ASSIST
https://github.com/google/talkback

Android device implementations are classified as an Automotive if they declare the feature
android.hardware.type.automotive or meet all the following criteria.

Are embedded as part of, or pluggable to, an automotive vehicle.
Are using a screen in the driver's seat row as the primary display.

The additional requirements in the rest of this section are specific to Android Automotive device
implementations.

2.5.1. Hardware

Screen Size (Section 7.1.1.1)
Automotive device implementations:

[A-0-1] MUST have a screen at least 6 inches in physical diagonal size.
[A-0-2] MUST have a screen size layout of at least 750 dp x 480 dp.

Navigation Keys (Section 7.2.3)
Automotive device implementations:

[A-0-1] MUST provide the Home function and MAY provide Back and Recent functions.
[A-0-2] MUST send both the normal and long press event of the the Back function (
KEYCODE_BACK) to the foreground application.

Accelerometer (Section 7.3.1)
Automotive device implementations:

[A-SR] Are STRONGLY RECOMMENDED to include a 3-axis accelerometer.

If Automotive device implementations include a 3-axis accelerometer, they:

[A-1-1] MUST be able to report events up to a frequency of at least 100 Hz.
[A-1-2] MUST comply with the Android car sensor coordinate system .

GPS (Section 7.3.3)
If Automotive device implementations include a GPS/GNSS receiver and report the capability to
applications through the android.hardware.location.gps feature flag:

[A-1-1] GNSS technology generation MUST be the year "2017" or newer.

Gyroscope (Section 7.3.4)
If Automotive device implementations include a gyroscope, they:

[A-1-1] MUST be able to report events up to a frequency of at least 100 Hz.

Android Automotive-only sensors (Section 7.3.11) Current Gear (Section 7.3.11.1)
Automotive device implementations:

SHOULD provide current gear as SENSOR_TYPE_GEAR .

Day Night Mode (Section 7.3.11.2)
Automotive device implementations:

Page 21 of 122

http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BACK
http://source.android.com/devices/sensors/sensor-types.html#auto_axes

[A-0-1] MUST support day/night mode defined as SENSOR_TYPE_NIGHT .
[A-0-2] The value of the SENSOR_TYPE_NIGHT flag MUST be consistent with dashboard
day/night mode and SHOULD be based on ambient light sensor input.
The underlying ambient light sensor MAY be the same as Photometer .

Driving Status (Section 7.3.11.3)
Automotive device implementations:

[A-0-1] MUST support driving status defined as SENSOR_TYPE_DRIVING_STATUS , with
a default value of DRIVE_STATUS_UNRESTRICTED when the vehicle is fully stopped and
parked. It is the responsibility of device manufacturers to configure
SENSOR_TYPE_DRIVING_STATUS in compliance with all laws and regulations that apply
to markets where the product is shipping.

Wheel Speed (Section 7.3.11.4)
Automotive device implementations:

[A-0-1] MUST provide vehicle speed defined as SENSOR_TYPE_CAR_SPEED .

Bluetooth (Section 7.4.3)
Automotive device implementations:

[A-0-1] MUST support Bluetooth and SHOULD support Bluetooth LE.

[A-0-2] Android Automotive implementations MUST support the following Bluetooth
profiles:

Phone calling over Hands-Free Profile (HFP).
Media playback over Audio Distribution Profile (A2DP).
Media playback control over Remote Control Profile (AVRCP).
Contact sharing using the Phone Book Access Profile (PBAP).

SHOULD support Message Access Profile (MAP).

Minimum Network Capability (Section 7.4.5)
Automotive device implementations:

SHOULD include support for cellular network based data connectivity.

Minimum Memory and Storage (Section 7.6.1)
Automotive device implementations:

[A-0-1] MUST have at least 4GB of non-volatile storage available for application private
data (a.k.a. "/data" partition)

USB peripheral mode (Section 7.7.1)
Automotive device implementations:

SHOULD include a USB port supporting peripheral mode.

Microphone (Section 7.8.1)
Automotive device implementations:

[A-0-1] MUST include a microphone.

Page 22 of 122

Audio Output (Section 7.8.2)
Automotive device implementations:

[A-0-1] MUST have an audio output and declare android.hardware.audio.output .

2.5.2. Multimedia

Audio Encoding (Section 5.1)
Automotive device implementations MUST support the following audio encoding:

[A-1-1] MPEG-4 AAC Profile (AAC LC)
[A-1-2] MPEG-4 HE AAC Profile (AAC+)
[A-1-3] AAC ELD (enhanced low delay AAC)

Video Encoding (Section 5.2)
Automotive device implementations MUST support the following video encoding:

[A-0-1] H.264 AVC
[A-0-2] VP8

Video Decoding (Section 5.3)
Automotive device implementations MUST support the following video decoding:

[A-0-1] H.264 AVC
[A-0-2] MPEG-4 SP
[A-0-3] VP8
[A-0-4] VP9

Automotive device implementations are STRONGLY RECOMMENDED to support the following video
decoding:

[A-SR] H.265 HEVC

2.5.3. Software

Automotive device implementations:

[A-0-1] MUST declare the feature android.hardware.type.automotive.
[A-0-2] MUST support uiMode = UI_MODE_TYPE_CAR .
[A-0-3] Android Automotive implementations MUST support all public APIs in the
android.car.* namespace.

WebView Compatibility (Section 3.4.1)
Automotive device implementations:

[A-0-1] MUST provide a complete implementation of the android.webkit.Webview API .

Notifications (Section 3.8.3)
Android Automotive device implementations:

[A-0-1] MUST display notifications that use the Notification.CarExtender API when

Page 23 of 122

http://developer.android.com/reference/android/content/res/Configuration.html#UI_MODE_TYPE_CAR
https://developer.android.com/reference/android/app/Notification.CarExtender.html

requested by third-party applications.

Search (Section 3.8.4)
Automotive device implementations:

[A-0-1] MUST implement an assistant on the device to handle the Assist action .

Media UI (Section 3.14)
Automotive device implementations:

[A-0-1] MUST include a UI framework to support third-party apps using the media APIs as
described in section 3.14.

2.2.4. Performance and Power

Power-Saving Modes (Section 8.3)
For Automotive device implementations:

[A-0-1] All Apps exempted from App Standby and Doze power-saving modes MUST be
made visible to the end user.
[A-0-2] The triggering, maintenance, wakeup algorithms and the use of global system
settings of App Standby and Doze power-saving modes MUST not deviate from the
Android Open Source Project.

Power Consumption Accounting (Sections 8.4)
Automotive device implementations:

[A-0-1] MUST provide a per-component power profile that defines the current consumption
value for each hardware component and the approximate battery drain caused by the
components over time as documented in the Android Open Source Project site.
[A-0-2] MUST report all power consumption values in milliampere hours (mAh).
[A-0-3] MUST report CPU power consumption per each process's UID. The Android Open
Source Project meets the requirement through the uid_cputime kernel module
implementation.
SHOULD be attributed to the hardware component itself if unable to attribute hardware
component power usage to an application.
[A-0-4] MUST make this power usage available via the adb shell dumpsys batterystats shell
command to the app developer.

2.2.5. Security Model

Multi-User Support (Section 9.5)
If Automotive device implementations include multiple users, they:

[A-1-1] MUST include a guest account that allows all functions provided by the vehicle
system without requiring a user to log in.

Automotive Vehicle System Isolation (Section 9.14)
Automotive device implementations:

[A-0-1] MUST gatekeep messages from Android framework vehicle subsystems, e.g.,
whitelisting permitted message types and message sources.

Page 24 of 122

http://developer.android.com/reference/android/content/Intent.html#ACTION_ASSIST
http://source.android.com/devices/tech/power/values.html
http://source.android.com/devices/tech/power/batterystats.html

[A-0-2] MUST watchdog against denial of service attacks from the Android framework or
third-party apps. This guards against malicious software flooding the vehicle network with
traffic, which may lead to malfunctioning vehicle subsystems.

2.6. Tablet Requirements

An Android Tablet device refers to an Android device implementation that is typically used by holding
in both hands and not in a clamshell form-factor.
Android device implementations are classified as a Tablet if they meet all the following criteria:

Have a power source that provides mobility, such as a battery.
Have a physical diagonal screen size in the range of 7 to 18 inches.

Tablet device implementations have similar requirements to handheld device implementations. The
exceptions are in indicated by and * in that section and noted for reference in this section.

2.4.1. Hardware

Screen Size (Section 7.1.1.1)
Tablet device implementations:

[Ta-0-1] MUST have a screen in the range of 7 to 18 inches.

Minimum Memory and Storage (Section 7.6.1)
The screen densities listed for small/normal screens in the handheld requirements are not applicable
to tablets.
USB peripheral mode (Section 7.7.1)
If handheld device implementations include a USB port supporting peripheral mode, they:

MAY implement the Android Open Accessory (AOA) API.

Virtual Reality Mode (Section 7.9.1)
Virtual Reality High Performance (Section 7.9.2)
Virtual reality requirements are not applicable to tablets.

3. Software

3.1. Managed API Compatibility

The managed Dalvik bytecode execution environment is the primary vehicle for Android applications.
The Android application programming interface (API) is the set of Android platform interfaces exposed
to applications running in the managed runtime environment.

[C-0-1] Device implementations MUST provide complete implementations, including all
documented behaviors, of any documented API exposed by the Android SDK or any API
decorated with the “@SystemApi” marker in the upstream Android source code.

[C-0-2] Device implementations MUST support/preserve all classes, methods, and
associated elements marked by the TestApi annotation (@TestApi).

[C-0-3] Device implementations MUST NOT omit any managed APIs, alter API interfaces
or signatures, deviate from the documented behavior, or include no-ops, except where

Page 25 of 122

http://developer.android.com/reference/packages.html

specifically allowed by this Compatibility Definition.

[C-0-4] Device implementations MUST still keep the APIs present and behave in a
reasonable way, even when some hardware features for which Android includes APIs are
omitted. See section 7 for specific requirements for this scenario.

3.1.1. Android Extensions

Android includes the support of extending the managed APIs while keeping the same API level
version.

[C-0-1] Android device implementations MUST preload the AOSP implementation of both
the shared library ExtShared and services ExtServices with versions higher than or equal to
the minimum versions allowed per each API level. For example, Android 7.0 device
implementations, running API level 24 MUST include at least version 1.

3.2. Soft API Compatibility

In addition to the managed APIs from section 3.1 , Android also includes a significant runtime-only
“soft” API, in the form of such things as intents, permissions, and similar aspects of Android
applications that cannot be enforced at application compile time.

3.2.1. Permissions

[C-0-1] Device implementers MUST support and enforce all permission constants as
documented by the Permission reference page . Note that section 9 lists additional
requirements related to the Android security model.

3.2.2. Build Parameters

The Android APIs include a number of constants on the android.os.Build class that are intended to
describe the current device.

[C-0-1] To provide consistent, meaningful values across device implementations, the table
below includes additional restrictions on the formats of these values to which device
implementations MUST conform.

Parameter Details

VERSION.RELEASE

The version of the currently-executing Android system, in human-
readable format. This field MUST have one of the string values
defined in 8.1 .

VERSION.SDK
The version of the currently-executing Android system, in a format
accessible to third-party application code. For Android 8.1, this field
MUST have the integer value 8.1_INT.

VERSION.SDK_INT
The version of the currently-executing Android system, in a format
accessible to third-party application code. For Android 8.1, this field
MUST have the integer value 8.1_INT.

VERSION.INCREMENTAL

A value chosen by the device implementer designating the specific
build of the currently-executing Android system, in human-readable
format. This value MUST NOT be reused for different builds made
available to end users. A typical use of this field is to indicate which

Page 26 of 122

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/os/Build.html
http://source.android.com/compatibility/8.1/versions.html

build number or source-control change identifier was used to generate
the build. There are no requirements on the specific format of this
field, except that it MUST NOT be null or the empty string ("").

BOARD

A value chosen by the device implementer identifying the specific
internal hardware used by the device, in human-readable format. A
possible use of this field is to indicate the specific revision of the board
powering the device. The value of this field MUST be encodable as 7-
bit ASCII and match the regular expression “^[a-zA-Z0-9_-]+$”.

BRAND

A value reflecting the brand name associated with the device as
known to the end users. MUST be in human-readable format and
SHOULD represent the manufacturer of the device or the company
brand under which the device is marketed. The value of this field
MUST be encodable as 7-bit ASCII and match the regular expression
“^[a-zA-Z0-9_-]+$”.

SUPPORTED_ABIS The name of the instruction set (CPU type + ABI convention) of native
code. See section 3.3. Native API Compatibility .

SUPPORTED_32_BIT_ABIS The name of the instruction set (CPU type + ABI convention) of native
code. See section 3.3. Native API Compatibility .

SUPPORTED_64_BIT_ABIS
The name of the second instruction set (CPU type + ABI convention)
of native code. See section 3.3. Native API Compatibility .

CPU_ABI The name of the instruction set (CPU type + ABI convention) of native
code. See section 3.3. Native API Compatibility .

CPU_ABI2 The name of the second instruction set (CPU type + ABI convention)
of native code. See section 3.3. Native API Compatibility .

DEVICE

A value chosen by the device implementer containing the
development name or code name identifying the configuration of the
hardware features and industrial design of the device. The value of
this field MUST be encodable as 7-bit ASCII and match the regular
expression “^[a-zA-Z0-9_-]+$”. This device name MUST NOT change
during the lifetime of the product.

FINGERPRINT

A string that uniquely identifies this build. It SHOULD be reasonably
human-readable. It MUST follow this template:
$(BRAND)/$(PRODUCT)/

 $(DEVICE):$(VERSION.RELEASE)/$(ID)/$(VERSION.INCREMENTAL):$(TYPE)/$(TAGS)

For example:
acme/myproduct/

 mydevice:8.1/LMYXX/3359:userdebug/test-keys

The fingerprint MUST NOT include whitespace characters. If other
fields included in the template above have whitespace characters,
they MUST be replaced in the build fingerprint with another character,
such as the underscore ("_") character. The value of this field MUST
be encodable as 7-bit ASCII.

HARDWARE

The name of the hardware (from the kernel command line or /proc). It
SHOULD be reasonably human-readable. The value of this field
MUST be encodable as 7-bit ASCII and match the regular expression
“^[a-zA-Z0-9_-]+$”.

HOST

A string that uniquely identifies the host the build was built on, in
human-readable format. There are no requirements on the specific

Page 27 of 122

format of this field, except that it MUST NOT be null or the empty
string ("").

ID

An identifier chosen by the device implementer to refer to a specific
release, in human-readable format. This field can be the same as
android.os.Build.VERSION.INCREMENTAL, but SHOULD be a value
sufficiently meaningful for end users to distinguish between software
builds. The value of this field MUST be encodable as 7-bit ASCII and
match the regular expression “^[a-zA-Z0-9._-]+$”.

MANUFACTURER

The trade name of the Original Equipment Manufacturer (OEM) of the
product. There are no requirements on the specific format of this field,
except that it MUST NOT be null or the empty string (""). This field
MUST NOT change during the lifetime of the product.

MODEL

A value chosen by the device implementer containing the name of the
device as known to the end user. This SHOULD be the same name
under which the device is marketed and sold to end users. There are
no requirements on the specific format of this field, except that it
MUST NOT be null or the empty string (""). This field MUST NOT
change during the lifetime of the product.

PRODUCT

A value chosen by the device implementer containing the
development name or code name of the specific product (SKU) that
MUST be unique within the same brand. MUST be human-readable,
but is not necessarily intended for view by end users. The value of this
field MUST be encodable as 7-bit ASCII and match the regular
expression “^[a-zA-Z0-9_-]+$”. This product name MUST NOT change
during the lifetime of the product.

SERIAL

A hardware serial number, which MUST be available and unique
across devices with the same MODEL and MANUFACTURER. The
value of this field MUST be encodable as 7-bit ASCII and match the
regular expression “^([a-zA-Z0-9]{6,20})$”.

TAGS

A comma-separated list of tags chosen by the device implementer
that further distinguishes the build. This field MUST have one of the
values corresponding to the three typical Android platform signing
configurations: release-keys, dev-keys, test-keys.

TIME A value representing the timestamp of when the build occurred.

TYPE

A value chosen by the device implementer specifying the runtime
configuration of the build. This field MUST have one of the values
corresponding to the three typical Android runtime configurations:
user, userdebug, or eng.

USER
A name or user ID of the user (or automated user) that generated the
build. There are no requirements on the specific format of this field,
except that it MUST NOT be null or the empty string ("").

SECURITY_PATCH

A value indicating the security patch level of a build. It MUST signify
that the build is not in any way vulnerable to any of the issues
described up through the designated Android Public Security Bulletin.
It MUST be in the format [YYYY-MM-DD], matching a defined string
documented in the Android Public Security Bulletin or in the Android
Security Advisory , for example "2015-11-01".

BASE_OS

A value representing the FINGERPRINT parameter of the build that is
otherwise identical to this build except for the patches provided in the
Android Public Security Bulletin. It MUST report the correct value and

Page 28 of 122

file:///gitc/manifest-rw/oc-mr1-dev/compatibility/cdd/source.android.com/security/bulletin
http://source.android.com/security/advisory

if such a build does not exist, report an empty string ("").

BOOTLOADER

A value chosen by the device implementer identifying the specific
internal bootloader version used in the device, in human-readable
format. The value of this field MUST be encodable as 7-bit ASCII and
match the regular expression “^[a-zA-Z0-9._-]+$”.

getRadioVersion()

MUST (be or return) a value chosen by the device implementer
identifying the specific internal radio/modem version used in the
device, in human-readable format. If a device does not have any
internal radio/modem it MUST return NULL. The value of this field
MUST be encodable as 7-bit ASCII and match the regular expression
“^[a-zA-Z0-9._-,]+$”.

3.2.3. Intent Compatibility

3.2.3.1. Core Application Intents

Android intents allow application components to request functionality from other Android components.
The Android upstream project includes a list of applications considered core Android applications,
which implements several intent patterns to perform common actions.

[C-0-1] Device implementations MUST preload one or more applications or service
components with an intent handler, for all the public intent filter patterns defined by the
following core android applications in AOSP:

Desk Clock
Browser
Calendar
Contacts
Gallery
GlobalSearch
Launcher
Music
Settings

3.2.3.2. Intent Resolution

[C-0-1] As Android is an extensible platform, device implementations MUST allow each
intent pattern referenced in section 3.2.3.1 to be overridden by third-party applications. The
upstream Android open source implementation allows this by default.

[C-0-2] Dvice implementers MUST NOT attach special privileges to system applications'
use of these intent patterns, or prevent third-party applications from binding to and
assuming control of these patterns. This prohibition specifically includes but is not limited to
disabling the “Chooser” user interface that allows the user to select between multiple
applications that all handle the same intent pattern.

[C-0-3] Device implementations MUST provide a user interface for users to modify the
default activity for intents.

However, device implementations MAY provide default activities for specific URI patterns
(e.g. http://play.google.com) when the default activity provides a more specific attribute for
the data URI. For example, an intent filter pattern specifying the data URI
“http://www.android.com” is more specific than the browser's core intent pattern for “http://”.

Page 29 of 122

https://developer.android.com/reference/android/os/Build.html#BOOTLOADER
https://developer.android.com/reference/android/os/Build.html#getRadioVersion()

Android also includes a mechanism for third-party apps to declare an authoritative default app linking
behavior for certain types of web URI intents. When such authoritative declarations are defined in an
app's intent filter patterns, device implementations:

[C-0-4] MUST attempt to validate any intent filters by performing the validation steps
defined in the Digital Asset Links specification as implemented by the Package Manager in
the upstream Android Open Source Project.
[C-0-5] MUST attempt validation of the intent filters during the installation of the application
and set all successfully validated UIR intent filters as default app handlers for their UIRs.
MAY set specific URI intent filters as default app handlers for their URIs, if they are
successfully verified but other candidate URI filters fail verification. If a device
implementation does this, it MUST provide the user appropriate per-URI pattern overrides
in the settings menu.
MUST provide the user with per-app App Links controls in Settings as follows:

[C-0-6] The user MUST be able to override holistically the default app links
behavior for an app to be: always open, always ask, or never open, which must
apply to all candidate URI intent filters equally.
[C-0-7] The user MUST be able to see a list of the candidate URI intent filters.
The device implementation MAY provide the user with the ability to override
specific candidate URI intent filters that were successfully verified, on a per-
intent filter basis.
[C-0-8] The device implementation MUST provide users with the ability to view
and override specific candidate URI intent filters if the device implementation
lets some candidate URI intent filters succeed verification while some others
can fail.

3.2.3.3. Intent Namespaces

[C-0-1] Device implementations MUST NOT include any Android component that honors
any new intent or broadcast intent patterns using an ACTION, CATEGORY, or other key
string in the android. or com.android. namespace.
[C-0-2] Device implementers MUST NOT include any Android components that honor any
new intent or broadcast intent patterns using an ACTION, CATEGORY, or other key string
in a package space belonging to another organization.
[C-0-3] Device implementers MUST NOT alter or extend any of the intent patterns used by
the core apps listed in section 3.2.3.1 .
Device implementations MAY include intent patterns using namespaces clearly and
obviously associated with their own organization. This prohibition is analogous to that
specified for Java language classes in section 3.6 .

3.2.3.4. Broadcast Intents

Third-party applications rely on the platform to broadcast certain intents to notify them of changes in
the hardware or software environment.
Device implementations:

[C-0-1] MUST broadcast the public broadcast intents in response to appropriate system
events as described in the SDK documentation. Note that this requirement is not conflicting
with section 3.5 as the limitation for background applications are also described in the SDK
documentation.

3.2.3.5. Default App Settings

Page 30 of 122

https://developer.android.com/training/app-links
https://developers.google.com/digital-asset-links

Android includes settings that provide users an easy way to select their default applications, for
example for Home screen or SMS.
Where it makes sense, device implementations MUST provide a similar settings menu and be
compatible with the intent filter pattern and API methods described in the SDK documentation as
below.
If device implementations report android.software.home_screen , they:

[C-1-1] MUST honor the android.settings.HOME_SETTINGS intent to show a default app
settings menu for Home Screen.

If device implementations report android.hardware.telephony , they:

[C-2-1] MUST provide a settings menu that will call the
android.provider.Telephony.ACTION_CHANGE_DEFAULT intent to show a dialog to change
the default SMS application.

[C-2-2] MUST honor the android.telecom.action.CHANGE_DEFAULT_DIALER intent to
show a dialog to allow the user to change the default Phone application.

[C-2-3] MUST honor the android.telecom.action.CHANGE_PHONE_ACCOUNTS intent to
provide user affordance to configure the ConnectionServices associated with the
PhoneAccounts , as well as a default PhoneAccount that the telecommunications service
provider will use to place outgoing calls. The AOSP implementation meets this requirement
by including a "Calling Accounts option" menu within the "Calls" settings menu.

If device implementations report android.hardware.nfc.hce , they:

[C-3-1] MUST honor the android.settings.NFC_PAYMENT_SETTINGS intent to show a
default app settings menu for Tap and Pay.

If device implementations support the VoiceInteractionService and have more than one application
using this API installed at a time, they:

[C-4-1] MUST honor the android.settings.ACTION_VOICE_INPUT_SETTINGS intent to show
a default app settings menu for voice input and assist.

3.2.4. Activities on secondary displays

If device implementations allow launching normal Android Activities on secondary displays, they:

[C-1-1] MUST set the android.software.activities_on_secondary_displays feature flag.
[C-1-2] MUST guarantee API compatibility similar to an activity running on the primary
display.
[C-1-3] MUST land the new activity on the same display as the activity that launched it,
when the new activity is launched without specifying a target display via the
ActivityOptions.setLaunchDisplayId() API.
[C-1-4] MUST destory all activities, when a display with the Display.FLAG_PRIVATE flag is
removed.
[C-1-5] MUST resize accordingly all activities on a VirtualDisplay if the display itself is
resized.
MAY show an IME (input method editor, a user control that enables users to enter text) on
the primary display, when a text input field becomes focused on a secondary display.
SHOULD implement the input focus on the secondary display independently of the primary
display, when touch or key inputs are supported.

Page 31 of 122

http://developer.android.com/reference/android/provider/Settings.html#ACTION_HOME_SETTINGS
http://developer.android.com/reference/android/provider/Telephony.Sms.Intents.html
https://developer.android.com/reference/android/telecom/TelecomManager.html#ACTION_CHANGE_DEFAULT_DIALER
https://developer.android.com/reference/android/telecom/TelecomManager.html#ACTION_CHANGE_PHONE_ACCOUNTS
https://developer.android.com/reference/android/telecom/ConnectionService.html
https://developer.android.com/reference/android/telecom/PhoneAccount.html
http://developer.android.com/reference/android/provider/Settings.html#ACTION_NFC_PAYMENT_SETTINGS
https://developer.android.com/reference/android/provider/Settings.html#ACTION_VOICE_INPUT_SETTINGS
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/ActivityOptions.html#setLaunchDisplayId%28int%29
http://developer.android.com/reference/android/view/Display.html#FLAG_PRIVATE
https://developer.android.com/reference/android/hardware/display/VirtualDisplay.html

SHOULD have android.content.res.Configuration which corresponds to that display in order to
be displayed, operate correctly, and maintain compatibility if an activity is launched on
secondary display.

If device implementations allow launching normal Android Activities on secondary displays and
primary and secondary displays have different android.util.DisplayMetrics :

[C-2-1] Non-resizeable activities (that have resizeableActivity=false in AndroidManifest.xml)
and apps targeting API level 23 or lower MUST NOT be allowed on secondary displays.

If device implementations allow launching normal Android Activities on secondary displays and a
secondary display has the android.view.Display.FLAG_PRIVATE flag:

[C-3-1] Only the owner of that display, system, and activities that are already on that
display MUST be able to launch to it. Everyone can launch to a display that has
android.view.Display.FLAG_PUBLIC flag.

3.3. Native API Compatibility

Device implementers are:
Native code compatibility is challenging. For this reason, device implementers are:

[SR] STRONGLY RECOMMENDED to use the implementations of the libraries listed
below from the upstream Android Open Source Project.

3.3.1. Application Binary Interfaces

Managed Dalvik bytecode can call into native code provided in the application .apk file as an ELF .so
file compiled for the appropriate device hardware architecture. As native code is highly dependent on
the underlying processor technology, Android defines a number of Application Binary Interfaces (ABIs)
in the Android NDK.
Device implementations:

[C-0-1] MUST be compatible with one or more defined ABIs and implement compatibility
with the Android NDK.
[C-0-2] MUST include support for code running in the managed environment to call into
native code, using the standard Java Native Interface (JNI) semantics.
[C-0-3] MUST be source-compatible (i.e. header-compatible) and binary-compatible (for
the ABI) with each required library in the list below.
[C-0-4] MUST support the equivalent 32-bit ABI if any 64-bit ABI is supported.
[C-0-5] MUST accurately report the native Application Binary Interface (ABI) supported by
the device, via the android.os.Build.SUPPORTED_ABIS ,
android.os.Build.SUPPORTED_32_BIT_ABIS , and
android.os.Build.SUPPORTED_64_BIT_ABIS parameters, each a comma separated list of
ABIs ordered from the most to the least preferred one.
[C-0-6] MUST report, via the above parameters, only those ABIs documented and
described in the latest version of the Android NDK ABI Management documentation , and
MUST include support for the Advanced SIMD (a.k.a. NEON) extension.

[C-0-7] MUST make all the following libraries, providing native APIs, available to apps that
include native code:

libaaudio.so (AAudio native audio support)
libandroid.so (native Android activity support)

Page 32 of 122

https://developer.android.com/reference/android/content/res/Configuration.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/util/DisplayMetrics.html
https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/view/Display.html#FLAG_PRIVATE
https://developer.android.com/reference/android/view/Display.html#FLAG_PUBLIC
https://developer.android.com/ndk/guides/abis.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388f/Beijfcja.html

libc (C library)
libcamera2ndk.so
libdl (dynamic linker)
libEGL.so (native OpenGL surface management)
libGLESv1_CM.so (OpenGL ES 1.x)
libGLESv2.so (OpenGL ES 2.0)
libGLESv3.so (OpenGL ES 3.x)
libicui18n.so
libicuuc.so
libjnigraphics.so
liblog (Android logging)
libmediandk.so (native media APIs support)
libm (math library)
libOpenMAXAL.so (OpenMAX AL 1.0.1 support)
libOpenSLES.so (OpenSL ES 1.0.1 audio support)
libRS.so
libstdc++ (Minimal support for C++)
libvulkan.so (Vulkan)
libz (Zlib compression)
JNI interface

[C-0-8] MUST NOT add or remove the public functions for the native libraries listed above.
[C-0-9] MUST list additional non-AOSP libraries exposed directly to third-party apps in
/vendor/etc/public.libraries.txt .
[C-0-10] MUST NOT expose any other native libraries, implemented and provided in
AOSP as system libraries, to third-party apps targeting API level 24 or higher as they are
reserved.
[C-0-11] MUST export all the OpenGL ES 3.1 and Android Extension Pack function
symbols, as defined in the NDK, through the libGLESv3.so library. Note that while all the
symbols MUST be present, section 7.1.4.1 describes in more detail the requirements for
when the full implementation of each corresponding functions are expected.
[C-0-12] MUST export function symbols for the core Vulkan 1.0 function symobls, as well
as the VK_KHR_surface , VK_KHR_android_surface , VK_KHR_swapchain ,
VK_KHR_maintenance1 , and VK_KHR_get_physical_device_properties2 extensions through
the libvulkan.so library. Note that while all the symbols MUST be present, section 7.1.4.2
describes in more detail the requirements for when the full implementation of each
corresponding functions are expected.
SHOULD be built using the source code and header files available in the upstream Android
Open Source Project

Note that future releases of the Android NDK may introduce support for additional ABIs.

3.3.2. 32-bit ARM Native Code Compatibility

If device implementations are 64-bit ARM devices, then:

[C-1-1] Although the ARMv8 architecture deprecates several CPU operations, including
some operations used in existing native code, the following deprecated operations MUST
remain available to 32-bit native ARM code, either through native CPU support or through
software emulation:

SWP and SWPB instructions

Page 33 of 122

http://developer.android.com/guide/topics/graphics/opengl.html#aep

SETEND instruction
CP15ISB, CP15DSB, and CP15DMB barrier operations

If device implementations include a 32-bit ARM ABI, they:

[C-2-1] MUST include the following lines in /proc/cpuinfo when it is read by 32-bit ARM
applications to ensure compatibility with applications built using legacy versions of Android
NDK.

Features: , followed by a list of any optional ARMv7 CPU features supported by
the device.
CPU architecture: , followed by an integer describing the device's highest
supported ARM architecture (e.g., "8" for ARMv8 devices).

SHOULD not alter /proc/cpuinfo when read by 64-bit ARM or non-ARM applications.

3.4. Web Compatibility

3.4.1. WebView Compatibility

If device implementations provide a complete implementation of the android.webkit.Webview API, they:

[C-1-1] MUST report android.software.webview .
[C-1-2] MUST use the Chromium Project build from the upstream Android Open Source
Project on the Android 8.1 branch for the implementation of the android.webkit.WebView
API.

[C-1-3] The user agent string reported by the WebView MUST be in this format:
Mozilla/5.0 (Linux; Android $(VERSION); $(MODEL) Build/$(BUILD); wv)
AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 $(CHROMIUM_VER) Mobile
Safari/537.36

The value of the $(VERSION) string MUST be the same as the value for
android.os.Build.VERSION.RELEASE.
The value of the $(MODEL) string MUST be the same as the value for
android.os.Build.MODEL.
The value of the $(BUILD) string MUST be the same as the value for
android.os.Build.ID.
The value of the $(CHROMIUM_VER) string MUST be the version of
Chromium in the upstream Android Open Source Project.
Device implementations MAY omit Mobile in the user agent string.

The WebView component SHOULD include support for as many HTML5 features as
possible and if it supports the feature SHOULD conform to the HTML5 specification .

3.4.2. Browser Compatibility

If device implementations include a standalone Browser application for general web browsing, they:

[C-1-1] MUST support each of these APIs associated with HTML5:
application cache/offline operation
<video> tag
geolocation

[C-1-2] MUST support the HTML5/W3C webstorage API and SHOULD support the
HTML5/W3C IndexedDB API . Note that as the web development standards bodies are

Page 34 of 122

http://www.chromium.org/
http://developer.android.com/reference/android/webkit/WebView.html
http://html.spec.whatwg.org/multipage/
http://www.w3.org/html/wg/drafts/html/master/browsers.html#offline
http://www.w3.org/html/wg/drafts/html/master/semantics.html#video
http://www.w3.org/TR/geolocation-API/
http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/IndexedDB/

transitioning to favor IndexedDB over webstorage, IndexedDB is expected to become a
required component in a future version of Android.
MAY ship a custom user agent string in the standalone Browser application.
SHOULD implement support for as much of HTML5 as possible on the standalone
Browser application (whether based on the upstream WebKit Browser application or a
third-party replacement).

However, If device implementations do not include a standalone Browser application, they:

[C-2-1] MUST still support the public intent patterns as described in section 3.2.3.1 .

3.5. API Behavioral Compatibility

The behaviors of each of the API types (managed, soft, native, and web) must be consistent with the
preferred implementation of the upstream Android Open Source Project . Some specific areas of
compatibility are:

[C-0-1] Devices MUST NOT change the behavior or semantics of a standard intent.
[C-0-2] Devices MUST NOT alter the lifecycle or lifecycle semantics of a particular type of
system component (such as Service, Activity, ContentProvider, etc.).
[C-0-3] Devices MUST NOT change the semantics of a standard permission.
Devices MUST NOT alter the limitations enforced on background applications. More
specifically, for background apps:

[C-0-4] they MUST stop executing callbacks that are registered by the app to
receive outputs from the GnssMeasurement and GnssNavigationMessage .
[C-0-5] they MUST rate-limit the frequency of updates that are provided to the
app through the LocationManager API class or the WifiManager.startScan()
method.
[C-0-6] if the app is targeting API level 25 or higher, they MUST NOT allow to
register broadcast receivers for the implicit broadcasts of standard Android
intents in the app's manifest, unless the broadcast intent requires a "signature"
or "signatureOrSystem" protectionLevel permission or are on the exemption list .
[C-0-7] if the app is targeting API level 25 or higher, they MUST stop the app's
background services, just as if the app had called the services' stopSelf()
method, unless the app is placed on a temporary whitelist to handle a task
that's visible to the user.
[C-0-8] if the app is targeting API level 25 or higher, they MUST release the
wakelocks the app holds.

The above list is not comprehensive. The Compatibility Test Suite (CTS) tests significant portions of
the platform for behavioral compatibility, but not all. It is the responsibility of the implementer to ensure
behavioral compatibility with the Android Open Source Project. For this reason, device implementers
SHOULD use the source code available via the Android Open Source Project where possible, rather
than re-implement significant parts of the system.

3.6. API Namespaces

Android follows the package and class namespace conventions defined by the Java programming
language. To ensure compatibility with third-party applications, device implementers MUST NOT make
any prohibited modifications (see below) to these package namespaces:

java.*

Page 35 of 122

http://html.spec.whatwg.org/multipage/
http://source.android.com/
https://developer.android.com/reference/android/location/GnssMeasurement.html
https://developer.android.com/reference/android/location/GnssNavigationMessage.html
https://developer.android.com/reference/android/location/LocationManager.html
https://developer.android.com/reference/android/net/wifi/WifiManager.html#startScan%28%29
https://developer.android.com/guide/topics/manifest/permission-element.html#plevel
https://developer.android.com/preview/features/background-broadcasts.html
https://developer.android.com/reference/android/app/Service.html#stopSelf%28%29

javax.*
sun.*
android.*
com.android.*

That is, they:

[C-0-1] MUST NOT modify the publicly exposed APIs on the Android platform by changing
any method or class signatures, or by removing classes or class fields.
[C-0-2] MUST NOT add any publicly exposed elements (such as classes or interfaces, or
fields or methods to existing classes or interfaces) or Test or System APIs to the APIs in
the above namespaces. A “publicly exposed element” is any construct that is not
decorated with the “@hide” marker as used in the upstream Android source code.

Device implementers MAY modify the underlying implementation of the APIs, but such modifications:

[C-0-3] MUST NOT impact the stated behavior and Java-language signature of any
publicly exposed APIs.
[C-0-4] MUST NOT be advertised or otherwise exposed to developers.

However, device implementers MAY add custom APIs outside the standard Android namespace, but
the custom APIs:

[C-0-5] MUST NOT be in a namespace owned by or referring to another organization. For
instance, device implementers MUST NOT add APIs to the com.google.* or similar
namespace: only Google may do so. Similarly, Google MUST NOT add APIs to other
companies' namespaces.
[C-0-6] MUST be packaged in an Android shared library so that only apps that explicitly
use them (via the <uses-library> mechanism) are affected by the increased memory usage
of such APIs.

If a device implementer proposes to improve one of the package namespaces above (such as by
adding useful new functionality to an existing API, or adding a new API), the implementer SHOULD
visit source.android.com and begin the process for contributing changes and code, according to the
information on that site.
Note that the restrictions above correspond to standard conventions for naming APIs in the Java
programming language; this section simply aims to reinforce those conventions and make them
binding through inclusion in this Compatibility Definition.

3.7. Runtime Compatibility

Device implementations:

[C-0-1] MUST support the full Dalvik Executable (DEX) format and Dalvik bytecode
specification and semantics .

[C-0-2] MUST configure Dalvik runtimes to allocate memory in accordance with the
upstream Android platform, and as specified by the following table. (See section 7.1.1 for
screen size and screen density definitions.)

SHOULD use Android RunTime (ART), the reference upstream implementation of the
Dalvik Executable Format, and the reference implementation’s package management
system.

SHOULD run fuzz tests under various modes of execution and target architectures to

Page 36 of 122

http://source.android.com/
https://android.googlesource.com/platform/dalvik/

assure the stability of the runtime. Refer to JFuzz and DexFuzz in the Android Open
Source Project website.

Note that memory values specified below are considered minimum values and device
implementations MAY allocate more memory per application.

Screen Layout Screen Density Minimum Application Memory

Android Watch

120 dpi (ldpi)

32MB160 dpi (mdpi)

213 dpi (tvdpi)

240 dpi (hdpi)
36MB

280 dpi (280dpi)

320 dpi (xhdpi)
48MB

360 dpi (360dpi)

400 dpi (400dpi) 56MB

420 dpi (420dpi) 64MB

480 dpi (xxhdpi) 88MB

560 dpi (560dpi) 112MB

640 dpi (xxxhdpi) 154MB

small/normal

120 dpi (ldpi)
32MB

160 dpi (mdpi)

213 dpi (tvdpi)

48MB240 dpi (hdpi)

280 dpi (280dpi)

320 dpi (xhdpi)
80MB

360 dpi (360dpi)

400 dpi (400dpi) 96MB

420 dpi (420dpi) 112MB

480 dpi (xxhdpi) 128MB

560 dpi (560dpi) 192MB

640 dpi (xxxhdpi) 256MB

large

120 dpi (ldpi) 32MB

160 dpi (mdpi) 48MB

213 dpi (tvdpi)
80MB

240 dpi (hdpi)

280 dpi (280dpi) 96MB

320 dpi (xhdpi) 128MB

360 dpi (360dpi) 160MB

400 dpi (400dpi) 192MB

Page 37 of 122

https://android.googlesource.com/platform/art/+/master/tools/dexfuzz/
https://android.googlesource.com/platform/art/+/master/tools/dexfuzz/

420 dpi (420dpi) 228MB
480 dpi (xxhdpi) 256MB

560 dpi (560dpi) 384MB

640 dpi (xxxhdpi) 512MB

xlarge

120 dpi (ldpi) 48MB

160 dpi (mdpi) 80MB

213 dpi (tvdpi)
96MB

240 dpi (hdpi)

280 dpi (280dpi) 144MB

320 dpi (xhdpi) 192MB

360 dpi (360dpi) 240MB

400 dpi (400dpi) 288MB

420 dpi (420dpi) 336MB

480 dpi (xxhdpi) 384MB

560 dpi (560dpi) 576MB

640 dpi (xxxhdpi) 768MB

3.8. User Interface Compatibility

3.8.1. Launcher (Home Screen)

Android includes a launcher application (home screen) and support for third-party applications to
replace the device launcher (home screen).
If device implementations allow third-party applications to replace the device home screen, they:

[C-1-1] MUST declare the platform feature android.software.home_screen .
[C-1-2] MUST return the AdaptiveIconDrawable object when the third party application use
<adaptive-icon> tag to provide their icon, and the PackageManager methods to retrieve icons
are called.

If device implementations include a default launcher that supports in-app pinning of shortcuts, they:

[C-2-1] MUST report true for ShortcutManager.isRequestPinShortcutSupported() .
[C-2-2] MUST have user affordance asking the user before adding a shortcut requested by
apps via the ShortcutManager.requestPinShortcut() API method.
[C-2-3] MUST support pinned shortcuts and dynamic and static shortcuts as documented
on the App Shortcuts page .

Conversely, if device implementations do not support in-app pinning of shortcuts, they:

[C-3-1] MUST report false for ShortcutManager.isRequestPinShortcutSupported() .

If device implementations implement a default launcher that provides quick access to the additional
shortcuts provided by third-party apps through the ShortcutManager API, they:

[C-4-1] MUST support all documented shortcut features (e.g. static and dynamic shortcuts,

Page 38 of 122

https://developer.android.com/reference/android/graphics/drawable/AdaptiveIconDrawable.html
https://developer.android.com/reference/android/content/pm/PackageManager.html
https://developer.android.com/reference/android/content/pm/ShortcutManager.html#isRequestPinShortcutSupported%28%29
https://developer.android.com/reference/android/content/pm/ShortcutManager.html#requestPinShortcut%28android.content.pm.ShortcutInfo, android.content.IntentSender%29
https://developer.android.com/guide/topics/ui/shortcuts.html
https://developer.android.com/reference/android/content/pm/ShortcutManager.html#isRequestPinShortcutSupported%28%29
https://developer.android.com/reference/android/content/pm/ShortcutManager.html

pinning shortcuts) and fully implement the APIs of the ShortcutManager API class.

If device implementations include a default launcher app that shows badges for the app icons, they:

[C-5-1] MUST respect the NotificationChannel.setShowBadge() API method. In other words,
show a visual affordance associated with the app icon if the value is set as true , and do
not show any app icon badging scheme when all of the app's notification channels have
set the value as false .
MAY override the app icon badges with their proprietary badging scheme when third-party
applications indicate support of the proprietary badging scheme through the use of
proprietary APIs, but SHOULD use the resources and values provided through the
notification badges APIs described in the SDK , such as the Notification.Builder.setNumber()
and the Notification.Builder.setBadgeIconType() API.

3.8.2. Widgets

Android supports third-party app widgets by defining a component type and corresponding API and
lifecycle that allows applications to expose an “AppWidget” to the end user.
If device implementations support third-party app widgets, they:

[C-1-1] MUST declare support for platform feature android.software.app_widgets .
[C-1-2] MUST include built-in support for AppWidgets and expose user interface
affordances to add, configure, view, and remove AppWidgets directly within the Launcher.
[C-1-3] MUST be capable of rendering widgets that are 4 x 4 in the standard grid size. See
the App Widget DesignGuidelines in the Android SDK documentation for details.
MAY support application widgets on the lock screen.

If device implementations support third-party app widgets and in-app pinning of shortcuts, they:

[C-2-1] MUST report true for AppWidgetManager.html.isRequestPinAppWidgetSupported() .
[C-2-2] MUST have user affordance asking the user before adding a shortcut requested by
apps via the AppWidgetManager.requestPinAppWidget() API method.

3.8.3. Notifications

Android includes Notification and NotificationManager APIs that allow third-party app developers to
notify users of notable events and attract users' attention using the hardware components (e.g. sound,
vibration and light) and software features (e.g. notification shade, system bar) of the device.

3.8.3.1. Presentation of Notifications

If device implementations allow third party apps to notify users of notable events , they:

[C-1-1] MUST support notifications that use hardware features, as described in the SDK
documentation, and to the extent possible with the device implementation hardware. For
instance, if a device implementation includes a vibrator, it MUST correctly implement the
vibration APIs. If a device implementation lacks hardware, the corresponding APIs MUST
be implemented as no-ops. This behavior is further detailed in section 7 .
[C-1-2] MUST correctly render all resources (icons, animation files etc.) provided for in the
APIs, or in the Status/System Bar icon style guide , although they MAY provide an
alternative user experience for notifications than that provided by the reference Android
Open Source implementation.
[C-1-3] MUST honor and implement properly the behaviors described for the APIs to

Page 39 of 122

https://developer.android.com/reference/android/content/pm/ShortcutManager.html
https://developer.android.com/reference/android/app/NotificationChannel.html#setShowBadge%28boolean%29
https://developer.android.com/preview/features/notification-badges.html
http://developer.android.com/reference/android/app/Notification.Builder.html#setNumber%28int%29
http://developer.android.com/reference/android/app/Notification.Builder.html#setBadgeIconType%28int%29
http://developer.android.com/guide/practices/ui_guidelines/widget_design.html
http://developer.android.com/guide/practices/ui_guidelines/widget_design.html
https://developer.android.com/reference/android/appwidget/AppWidgetManager.html#isRequestPinAppWidgetSupported%28%29
https://developer.android.com/reference/android/appwidget/AppWidgetManager.html#requestPinAppWidget%28android.content.ComponentName,android.os.Bundle, android.app.PendingIntent%29
https://developer.android.com/reference/android/app/Notification.html
https://developer.android.com/reference/android/app/NotificationManager.html
http://developer.android.com/guide/topics/ui/notifiers/notifications.html
https://developer.android.com/guide/topics/resources/available-resources.html
http://developer.android.com/design/style/iconography.html
https://developer.android.com/guide/topics/ui/notifiers/notifications.html#Managing

update, remove and group notifications.
[C-1-4] MUST provide the full behavior of the NotificationChannel API documented in the
SDK.
[C-1-5] MUST provide a user affordance to block and modify a certain third-party app's
notification per each channel and app package level.
[C-1-6] MUST also provide a user affordance to display deleted notification channels.
SHOULD support rich notifications.
SHOULD present some higher priority notifications as heads-up notifications.
SHOULD have a user affordance to snooze notifications.
MAY only manage the visibility and timing of when third-party apps can notify users of
notable events to mitigate safety issues such as driver distraction.

If device implementations support rich notifications, they:

[C-2-1] MUST use the exact resources as provided through the Notification.Style API class
and its subclasses for the presented resource elements.
SHOULD present each and every resource element (e.g. icon, title and summary text)
defined in the Notification.Style API class and its subclasses.

If device impelementations support heads-up notifications: they:

[C-3-1] MUST use the heads-up notification view and resources as described in the
Notification.Builder API class when heads-up notifications are presented.

3.8.3.2. Notification Listener Service

Android includes the NotificationListenerService APIs that allow apps (once explicitly enabled by the
user) to receive a copy of all notifications as they are posted or updated.
If device implementations report the feature flag android.hardware.ram.normal , they:

[C-1-1] MUST correctly and promptly update notifications in their entirety to all such
installed and user-enabled listener services, including any and all metadata attached to the
Notification object.
[C-1-2] MUST respect the snoozeNotification() API call, and dismiss the notification and
make a callback after the snooze duration that is set in the API call.

If device implementations have a user affordance to snooze notifications, they:

[C-2-1] MUST reflect the snoozed notification status properly through the standard APIs
such as NotificationListenerService.getSnoozedNotifications() .
[C-2-2] MUST make this user affordance available to snooze notifications from each
installed third-party app's, unless they are from persistent/foreground services.

3.8.3.3. DND (Do not Disturb)

If device implementations support the DND feature, they:

[C-1-1] MUST implement an activity that would respond to the intent
ACTION_NOTIFICATION_POLICY_ACCESS_SETTINGS , which for implementations
with UI_MODE_TYPE_NORMAL it MUST be an activity where the user can grant or deny
the app access to DND policy configurations.
[C-1-2] MUST, for when the device implementation has provided a means for the user to

Page 40 of 122

https://developer.android.com/reference/android/app/NotificationChannel.html
https://developer.android.com/reference/android/app/Notification.Style.html
https://developer.android.com/reference/android/app/Notification.Style.html
https://developer.android.com/reference/android/app/Notification.Builder.html
https://developer.android.com/reference/android/service/notification/NotificationListenerService.html
https://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_RAM_NORMAL
https://developer.android.com/reference/android/service/notification/NotificationListenerService.html#snoozeNotification%28java.lang.String, long%29
https://developer.android.com/reference/android/service/notification/NotificationListenerService.html#getSnoozedNotifications%28%29
https://developer.android.com/reference/android/provider/Settings.html#ACTION_NOTIFICATION_POLICY_ACCESS_SETTINGS

grant or deny third-party apps to access the DND policy configuration, display Automatic
DND rules created by applications alongside the user-created and pre-defined rules.
[C-1-3] MUST honor the suppressedVisualEffects values passed along the
NotificationManager.Policy and if an app has set any of the
SUPPRESSED_EFFECT_SCREEN_OFF or SUPPRESSED_EFFECT_SCREEN_ON
flags, it SHOULD indicate to the user that the visual effects are suppressed in the DND
settings menu.

3.8.4. Search

Android includes APIs that allow developers to incorporate search into their applications and expose
their application’s data into the global system search. Generally speaking, this functionality consists of
a single, system-wide user interface that allows users to enter queries, displays suggestions as users
type, and displays results. The Android APIs allow developers to reuse this interface to provide search
within their own apps and allow developers to supply results to the common global search user
interface.

Android device implementations SHOULD include global search, a single, shared, system-
wide search user interface capable of real-time suggestions in response to user input.

If device implementations implement the global search interface, they:

[C-1-1] MUST implement the APIs that allow third-party applications to add suggestions to
the search box when it is run in global search mode.

If no third-party applications are installed that make use of the global search:

The default behavior SHOULD be to display web search engine results and suggestions.

Android also includes the Assist APIs to allow applications to elect how much information of the
current context is shared with the assistant on the device.
If device implementations support the Assist action, they:

[C-2-1] MUST indicate clearly to the end user when the context is shared, by either:
Each time the assist app accesses the context, displaying a white light around
the edges of the screen that meet or exceed the duration and brightness of the
Android Open Source Project implementation.
For the preinstalled assist app, providing a user affordance less than two
navigations away from the default voice input and assistant app settings menu ,
and only sharing the context when the assist app is explicitly invoked by the
user through a hotword or assist navigation key input.

[C-2-2] The designated interaction to launch the assist app as described in section 7.2.3
MUST launch the user-selected assist app, in other words the app that implements
VoiceInteractionService , or an activity handling the ACTION_ASSIST intent.
[SR] STRONGLY RECOMMENDED to use long press on HOME key as this designated
interaction.

3.8.5. Alerts and Toasts

Applications can use the Toast API to display short non-modal strings to the end user that disappear
after a brief period of time, and use the TYPE_APPLICATION_OVERLAY window type API to display
alert windows as an overlay over other apps.
If device implementations include a screen or video output, they:

Page 41 of 122

https://developer.android.com/reference/android/app/NotificationManager.html#addAutomaticZenRule%28android.app.AutomaticZenRule%29
https://developer.android.com/reference/android/app/NotificationManager.Policy.html#suppressedVisualEffects
https://developer.android.com/reference/android/app/NotificationManager.Policy.html#NotificationManager.Policy%28int, int, int, int%29
http://developer.android.com/reference/android/app/SearchManager.html
https://developer.android.com/reference/android/app/assist/package-summary.html
http://developer.android.com/reference/android/widget/Toast.html
http://developer.android.com/reference/android/view/WindowManager.LayoutParams.html#TYPE_APPLICATION_OVERLAY

[C-1-1] MUST provide a user affordance to block an app from displaying alert windows that
use the TYPE_APPLICATION_OVERLAY . The AOSP implementation meets this
requirement by having controls in the notification shade.

[C-1-2] MUST honor the Toast API and display Toasts from applications to end users in
some highly visible manner.

3.8.6. Themes

Android provides “themes” as a mechanism for applications to apply styles across an entire Activity or
application.
Android includes a “Holo” and "Material" theme family as a set of defined styles for application
developers to use if they want to match the Holo theme look and feel as defined by the Android SDK.
If device implementations include a screen or video output, they:

[C-1-1] MUST NOT alter any of the Holo theme attributes exposed to applications.
[C-1-2] MUST support the “Material” theme family and MUST NOT alter any of the Material
theme attributes or their assets exposed to applications.

Android also includes a “Device Default” theme family as a set of defined styles for application
developers to use if they want to match the look and feel of the device theme as defined by the device
implementer.

Device implementations MAY modify the Device Default theme attributes exposed to
applications.

Android supports a variant theme with translucent system bars, which allows application developers to
fill the area behind the status and navigation bar with their app content. To enable a consistent
developer experience in this configuration, it is important the status bar icon style is maintained across
different device implementations.
If device implementations include a system status bar, they:

[C-2-1] MUST use white for system status icons (such as signal strength and battery level)
and notifications issued by the system, unless the icon is indicating a problematic status or
an app requests a light status bar using the SYSTEM_UI_FLAG_LIGHT_STATUS_BAR
flag.
[C-2-2] Android device implementations MUST change the color of the system status icons
to black (for details, refer to R.style) when an app requests a light status bar.

3.8.7. Live Wallpapers

Android defines a component type and corresponding API and lifecycle that allows applications to
expose one or more “Live Wallpapers” to the end user. Live wallpapers are animations, patterns, or
similar images with limited input capabilities that display as a wallpaper, behind other applications.
Hardware is considered capable of reliably running live wallpapers if it can run all live wallpapers, with
no limitations on functionality, at a reasonable frame rate with no adverse effects on other
applications. If limitations in the hardware cause wallpapers and/or applications to crash, malfunction,
consume excessive CPU or battery power, or run at unacceptably low frame rates, the hardware is
considered incapable of running live wallpaper. As an example, some live wallpapers may use an
OpenGL 2.0 or 3.x context to render their content. Live wallpaper will not run reliably on hardware that
does not support multiple OpenGL contexts because the live wallpaper use of an OpenGL context
may conflict with other applications that also use an OpenGL context.

Page 42 of 122

http://developer.android.com/reference/android/view/WindowManager.LayoutParams.html#TYPE_APPLICATION_OVERLAY
http://developer.android.com/guide/topics/ui/themes.html
http://developer.android.com/reference/android/R.style.html
http://developer.android.com/reference/android/R.style.html#Theme_Material
http://developer.android.com/reference/android/R.style.html
http://developer.android.com/reference/android/R.style.html
http://developer.android.com/reference/android/service/wallpaper/WallpaperService.html

Device implementations capable of running live wallpapers reliably as described above
SHOULD implement live wallpapers.

If device implementations implement live wallpapers, they:

[C-1-1] MUST report the platform feature flag android.software.live_wallpaper.

3.8.8. Activity Switching

The upstream Android source code includes the overview screen , a system-level user interface for
task switching and displaying recently accessed activities and tasks using a thumbnail image of the
application’s graphical state at the moment the user last left the application.
Device implementations including the recents function navigation key as detailed in section 7.2.3 MAY
alter the interface.
If device implementations including the recents function navigation key as detailed in section 7.2.3
alter the interface, they:

[C-1-1] MUST support at least up to 7 displayed activities.
SHOULD at least display the title of 4 activities at a time.
[C-1-2] MUST implement the screen pinning behavior and provide the user with a settings
menu to toggle the feature.
SHOULD display highlight color, icon, screen title in recents.
SHOULD display a closing affordance ("x") but MAY delay this until user interacts with
screens.
SHOULD implement a shortcut to switch easily to the previous activity
SHOULD trigger the fast-switch action between the two most recently used apps, when the
recents function key is tapped twice.
SHOULD trigger the split-screen multiwindow-mode, if supported, when the recents
functions key is long pressed.

MAY display affiliated recents as a group that moves together.

[SR] Are STRONGLY RECOMMENDED to use the upstream Android user interface (or a
similar thumbnail-based interface) for the overview screen.

3.8.9. Input Management

Android includes support for Input Management and support for third-party input method editors.
If device implementations allow users to use third-party input methods on the device, they:

[C-1-1] MUST declare the platform feature android.software.input_methods and support
IME APIs as defined in the Android SDK documentation.
[C-1-2] MUST provide a user-accessible mechanism to add and configure third-party input
methods in response to the android.settings.INPUT_METHOD_SETTINGS intent.

If device implementations declare the android.software.autofill feature flag, they:

[C-2-1] MUST fully implement the AutofillService and AutofillManager APIs and honor the
android.settings.REQUEST_SET_AUTOFILL_SERVICE intent to show a default app settings
menu to enable and disable autofill and change the default autofill service for the user.

3.8.10. Lock Screen Media Control

Page 43 of 122

https://developer.android.com/guide/components/activities/recents.html
http://developer.android.com/about/versions/android-5.0.html#ScreenPinning
http://developer.android.com/guide/topics/text/creating-input-method.html
https://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_AUTOFILL
https://developer.android.com/reference/android/service/autofill/AutofillService.html
https://developer.android.com/reference/android/view/autofill/AutofillManager.html
https://developer.android.com/reference/android/provider/Settings.html#ACTION_REQUEST_SET_AUTOFILL_SERVICE

The Remote Control Client API is deprecated from Android 5.0 in favor of the Media Notification
Template that allows media applications to integrate with playback controls that are displayed on the
lock screen.

3.8.11. Screen savers (previously Dreams)

Android includes support for interactivescreensavers , previously referred to as Dreams. Screen
savers allow users to interact with applications when a device connected to a power source is idle or
docked in a desk dock. Android Watch devices MAY implement screen savers, but other types of
device implementations SHOULD include support for screen savers and provide a settings option for
users toconfigure screen savers in response to the android.settings.DREAM_SETTINGS intent.

3.8.12. Location

If device implementations include a hardware sensor (e.g. GPS) that is capable of providing the
location coordinates:

[C-1-1] location modes MUST be displayed in the Location menu within Settings.

3.8.13. Unicode and Font

Android includes support for the emoji characters defined in Unicode 10.0 .
If device implementations include a screen or video output, they:

[C-1-1] MUST be capable of rendering these emoji characters in color glyph.
[C-1-2] MUST include support for:
Roboto 2 font with different weights—sans-serif-thin, sans-serif-light, sans-serif-medium,
sans-serif-black, sans-serif-condensed, sans-serif-condensed-light for the languages
available on the device.
Full Unicode 7.0 coverage of Latin, Greek, and Cyrillic, including the Latin Extended A, B,
C, and D ranges, and all glyphs in the currency symbols block of Unicode 7.0.
SHOULD support the skin tone and diverse family emojis as specified in the Unicode
Technical Report #51 .

If device implementations include an IME, they:

SHOULD provide an input method to the user for these emoji characters.

3.8.14. Multi-windows

If device implementations have the capability to display multiple activities at the same time, they:

[C-1-1] MUST implement such multi-window mode(s) in accordance with the application
behaviors and APIs described in the Android SDK multi-window mode support
documentation and meet the following requirements:
[C-1-2] Applications can indicate whether they are capable of operating in multi-window
mode in the AndroidManifest.xml file, either explicitly via setting the android:resizeableActivity
attribute to true or implicitly by having the targetSdkVersion > 24. Apps that explicitly set
this attribute to false in their manifest MUST NOT be launched in multi-window mode. Older
apps with targetSdkVersion < 24 that did not set this android:resizeableActivity attribute
MAY be launched in multi-window mode, but the system MUST provide warning that the
app may not work as expected in multi-window mode.
[C-1-3] MUST NOT offer split-screen or freeform mode if the screen height < 440 dp and

Page 44 of 122

http://developer.android.com/reference/android/app/Notification.MediaStyle.html
http://developer.android.com/reference/android/service/dreams/DreamService.html
http://developer.android.com/reference/android/provider/Settings.Secure.html#LOCATION_MODE
http://www.unicode.org/versions/Unicode10.0.0/
http://unicode.org/reports/tr51
https://developer.android.com/guide/topics/ui/multi-window.html
https://developer.android.com/reference/android/R.attr.html#resizeableActivity

the the screen width < 440 dp.
Device implementations with screen size xlarge SHOULD support freeform mode.

If device implementations support multi-window mode(s), and the split screen mode, they:

[C-2-1] MUST preload a resizeable launcher as the default.
[C-2-2] MUST crop the docked activity of a split-screen multi-window but SHOULD show
some content of it, if the Launcher app is the focused window.
[C-2-3] MUST honor the declared AndroidManifestLayout_minWidth and
AndroidManifestLayout_minHeight values of the third-party launcher application and not
override these values in the course of showing some content of the docked activity.

If device implementations support multi-window mode(s) and Picture-in-Picture multi-window mode,
they:

[C-3-1] MUST launch activities in picture-in-picture multi-window mode when the app is: *
Targeting API level 26 or higher and declares android:supportsPictureInPicture * Targeting
API level 25 or lower and declares both android:resizeableActivity and
android:supportsPictureInPicture .
[C-3-2] MUST expose the actions in their SystemUI as specified by the current PIP activity
through the setActions() API.
[C-3-3] MUST support aspect ratios greater than or equal to 1:2.39 and less than or equal
to 2.39:1, as specified by the PIP activity through the setAspectRatio() API.
[C-3-4] MUST use KeyEvent.KEYCODE_WINDOW to control the PIP window; if PIP mode
is not implemented, the key MUST be available to the foreground activity.
[C-3-5] MUST provide a user affordance to block an app from displaying in PIP mode; the
AOSP implementation meets this requirement by having controls in the notification shade.
[C-3-6] MUST allocate minimum width and height of 108 dp for the PIP window and
minimum width of 240 dp and height of 135 dp for the PIP window when the
Configuration.uiMode is configured as UI_MODE_TYPE_TELEVISION

3.9. Device Administration

Android includes features that allow security-aware applications to perform device administration
functions at the system level, such as enforcing password policies or performing remote wipe, through
the Android Device Administration API].
If device implementations implement the full range of device administration policies defined in the
Android SDK documentation, they:

[C-1-1] MUST declare android.software.device_admin .
[C-1-2] MUST support device owner provisioning as described in section 3.9.1 and section
3.9.1.1 .
[C-1-3] MUST declare the support of manged profiles via the android.software.managed_users
feature flag, except for when the device is configured so that it would report itself as a low
RAM device or so that it allocate internal (non-removable) storage as shared storage.

3.9.1 Device Provisioning

3.9.1.1 Device owner provisioning

If device implementations declare android.software.device_admin , they:

Page 45 of 122

https://developer.android.com/guide/topics/ui/multi-window.html#configuring
https://developer.android.com/reference/android/R.styleable.html#AndroidManifestLayout_minWidth
https://developer.android.com/reference/android/R.styleable.html#AndroidManifestLayout_minHeight
https://developer.android.com/reference/android/R.attr.html#supportsPictureInPicture
https://developer.android.com/reference/android/R.attr.html#resizeableActivity
https://developer.android.com/reference/android/R.attr.html#supportsPictureInPicture
https://developer.android.com/reference/android/app/PictureInPictureParams.Builder.html#setActions%28java.util.List%3Candroid.app.RemoteAction%3E%29
https://developer.android.com/reference/android/app/PictureInPictureParams.Builder.html#setAspectRatio%28android.util.Rational%29
https://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_WINDOW
https://developer.android.com/reference/android/content/res/Configuration.html#UI_MODE_TYPE_TELEVISION
http://developer.android.com/guide/topics/admin/device-admin.html
http://developer.android.com/guide/topics/admin/device-admin.html
http://developer.android.com/reference/android/app/ActivityManager.html#isLowRamDevice%28%29

[C-1-1] MUST support enrolling a Device Policy Client (DPC) as a Device Owner app as
described below:.

when the device implementation has no user data is configured yet, it:
[C-1-3] MUST report true for
DevicePolicyManager.isProvisioningAllowed(ACTION_PROVISION_MANAGED_DEVICE)
.
[C-1-4] MUST enroll the DPC application as the Device Owner app
in response to the intent action
android.app.action.PROVISION_MANAGED_DEVICE .
[C-1-5] MUST enroll the DPC application as the Device Owner app
if the device declares Near-Field Communications (NFC) support
via the feature flag android.hardware.nfc and receives an NFC
message containing a record with MIME type
MIME_TYPE_PROVISIONING_NFC .

When the device implementation has user data, it:
[C-1-6] MUST report false for the
DevicePolicyManager.isProvisioningAllowed(ACTION_PROVISION_MANAGED_DEVICE)
.
[C-1-7] MUST not enroll any DPC application as the Device Owner
App any more.

[C-1-2] MUST NOT set an application (including pre-installed app) as the Device Owner
app without explicit consent or action from the user or the administrator of the device.

If device implementations declare android.software.device_admin , but also include a proprietary Device
Owner management solution and provide a mechanism to promote an application configured in their
solution as a "Device Owner equivalent" to the standard "Device Owner" as recognized by the
standard Android DevicePolicyManager APIs, they:

[C-2-1] MUST have a process in place to verify that the specific app being promoted
belongs to a legitimate enterprise device management solution and it has been already
configured in the proprietary solution to have the rights equivalent as a "Device Owner".
[C-2-2] MUST show the same AOSP Device Owner consent disclosure as the flow initiated
by android.app.action.PROVISION_MANAGED_DEVICE prior to enrolling the DPC
application as "Device Owner".
MAY have user data on the device prior to enrolling the DPC application as "Device
Owner".

3.9.1.2 Managed profile provisioning

If device implementations declare android.software.managed_users , they:

[C-1-1] MUST implement the APIs allowing a Device Policy Controller (DPC) application to
become the owner of a new Managed Profile .

[C-1-2] The managed profile provisioning process (the flow initiated by
android.app.action.PROVISION_MANAGED_PROFILE) users experience MUST align
with the AOSP implementation.

[C-1-3] MUST provide the following user affordances within the Settings to indicate to the
user when a particular system function has been disabled by the Device Policy Controller
(DPC):

A consistent icon or other user affordance (for example the upstream AOSP
info icon) to represent when a particular setting is restricted by a Device Admin.
A short explanation message, as provided by the Device Admin via the

Page 46 of 122

http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#isDeviceOwnerApp%28java.lang.String%29
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#isProvisioningAllowed(java.lang.String)
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#ACTION_PROVISION_MANAGED_DEVICE
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#MIME_TYPE_PROVISIONING_NFC
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#isProvisioningAllowed(java.lang.String)
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#ACTION_PROVISION_MANAGED_DEVICE
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#ACTION_PROVISION_MANAGED_PROFILE
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#isProfileOwnerApp%28java.lang.String%29
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#ACTION_PROVISION_MANAGED_PROFILE

setShortSupportMessage .
The DPC application’s icon.

3.9.2 Managed Profile Support

If device implementations declare android.software.managed_users , they:

[C-1-1] MUST support managed profiles via the android.app.admin.DevicePolicyManager
APIs.
[C-1-2] MUST allow one and only one managed profile to be created .
[C-1-3] MUST use an icon badge (similar to the AOSP upstream work badge) to represent
the managed applications and widgets and other badged UI elements like Recents &
Notifications.
[C-1-4] MUST display a notification icon (similar to the AOSP upstream work badge) to
indicate when user is within a managed profile application.
[C-1-5] MUST display a toast indicating that the user is in the managed profile if and when
the device wakes up (ACTION_USER_PRESENT) and the foreground application is within
the managed profile.
[C-1-6] Where a managed profile exists, MUST show a visual affordance in the Intent
'Chooser' to allow the user to forward the intent from the managed profile to the primary
user or vice versa, if enabled by the Device Policy Controller.
[C-1-7] Where a managed profile exists, MUST expose the following user affordances for
both the primary user and the managed profile:

Separate accounting for battery, location, mobile data and storage usage for
the primary user and managed profile.
Independent management of VPN Applications installed within the primary user
or managed profile.
Independent management of applications installed within the primary user or
managed profile.
Independent management of accounts within the primary user or managed
profile.

[C-1-8] MUST ensure the preinstalled dialer, contacts and messaging applications can
search for and look up caller information from the managed profile (if one exists) alongside
those from the primary profile, if the Device Policy Controller permits it.
[C-1-9] MUST ensure that it satisfies all the security requirements applicable for a device
with multiple users enabled (see section 9.5), even though the managed profile is not
counted as another user in addition to the primary user.
[C-1-10] MUST support the ability to specify a separate lock screen meeting the following
requirements to grant access to apps running in a managed profile.

Device implementations MUST honor the
DevicePolicyManager.ACTION_SET_NEW_PASSWORD intent and show an
interface to configure a separate lock screen credential for the managed profile.
The lock screen credentials of the managed profile MUST use the same
credential storage and management mechanisms as the parent profile, as
documented on the Android Open Source Project Site
The DPC password policies MUST apply to only the managed profile's lock
screen credentials unless called upon the DevicePolicyManager instance
returned by getParentProfileInstance .

When contacts from the managed profile are displayed in the preinstalled call log, in-call
UI, in-progress and missed-call notifications, contacts and messaging apps they SHOULD
be badged with the same badge used to indicate managed profile applications.

Page 47 of 122

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setShortSupportMessage%28android.content.ComponentName, java.lang.CharSequence%29
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#ACTION_PROVISION_MANAGED_PROFILE
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#ACTION_SET_NEW_PASSWORD
http://source.android.com/security/authentication/index.html
https://developer.android.com/guide/topics/admin/device-admin.html#pwd
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#getParentProfileInstance%28android.content.ComponentName%29

3.10. Accessibility

Android provides an accessibility layer that helps users with disabilities to navigate their devices more
easily. In addition, Android provides platform APIs that enable accessibility service implementations to
receive callbacks for user and system events and generate alternate feedback mechanisms, such as
text-to-speech, haptic feedback, and trackball/d-pad navigation.
If device implementations support third-party accessibility services, they:

[C-1-1] MUST provide an implementation of the Android accessibility framework as
described in the accessibility APIs SDK documentation.
[C-1-2] MUST generate accessibility events and deliver the appropriate AccessibilityEvent
to all registered AccessibilityService implementations as documented in the SDK.
[C-1-3] MUST honor the android.settings.ACCESSIBILITY_SETTINGS intent to provide a
user-accessible mechanism to enable and disable the third-party accessibility services
alongside the preloaded accessibility services.
[C-1-4] MUST add a button in the system's navigation bar allowing the user to control the
accessibility service when the enabled accessibility services declare the
AccessibilityServiceInfo.FLAG_REQUEST_ACCESSIBILITY_BUTTON . Note that for device
implementations with no system navigation bar, this requirement is not applicable, but
device implementations SHOULD provide a user affordance to control these accessibility
services.

If device implementations include preloaded accessibility services, they:

[C-2-1] MUST implement these preloaded accessibility services as [Direct Boot aware]
(https://developer.android.com/reference/android/content/pm/ComponentInfo.html#directBootAware)
apps when the data storage is encrypted with File Based Encryption (FBE).
SHOULD provide a mechanism in the out-of-box setup flow for users to enable relevant
accessibility services, as well as options to adjust the font size, display size and
magnification gestures.

3.11. Text-to-Speech

Android includes APIs that allow applications to make use of text-to-speech (TTS) services and allows
service providers to provide implementations of TTS services.
If device implementations reporting the feature android.hardware.audio.output, they:

[C-1-1] MUST support the Android TTS framework APIs.

If device implementations support installation of third-party TTS engines, they:

[C-2-1] MUST provide user affordance to allow the user to select a TTS engine for use at
system level.

3.12. TV Input Framework

The Android Television Input Framework (TIF) simplifies the delivery of live content to Android
Television devices. TIF provides a standard API to create input modules that control Android
Television devices.
If device implementations support TIF, they:

[C-1-1] MUST declare the platform feature android.software.live_tv .

Page 48 of 122

http://developer.android.com/reference/android/view/accessibility/package-summary.html
http://developer.android.com/reference/android/accessibilityservice/AccessibilityService.html
https://developer.android.com/reference/android/accessibilityservice/AccessibilityServiceInfo.html#FLAG%5FREQUEST%5FACCESSIBILITY%5FBUTTON
http://developer.android.com/reference/android/speech/tts/package-summary.html
http://source.android.com/devices/tv/index.html

[C-1-2] MUST preload a TV application (TV App) and meet all requirements described in
section 3.12.1 .

3.12.1. TV App

If device implementations support TIF:

[C-1-1] The TV App MUST provide facilities to install and use TV Channels and meet the
following requirements:

The TV app that is required for Android device implementations declaring the android.software.live_tv
feature flag, MUST meet the following requirements:

Device implementations SHOULD allow third-party TIF-based inputs (third-party inputs)
to be installed and managed.
Device implementations MAY provide visual separation between pre-installed TIF-based
inputs (installed inputs) and third-party inputs.
Device implementations SHOULD NOT display the third-party inputs more than a single
navigation action away from the TV App (i.e. expanding a list of third-party inputs from the
TV App).

The Android Open Source Project provides an implementation of the TV App that meets the above
requirements.

3.12.1.1. Electronic Program Guide

If device implementations support TIF, they:

[C-1-1] MUST show an informational and interactive overlay, which MUST include an
electronic program guide (EPG) generated from the values in the TvContract.Programs
fields.
[C-1-2] On channel change, device implementations MUST display EPG data for the
currently playing program.
[SR] The EPG is STRONGLY RECOMMENDED to display installed inputs and third-party
inputs with equal prominence. The EPG SHOULD NOT display the third-party inputs more
than a single navigation action away from the installed inputs on the EPG.
The EPG SHOULD display information from all installed inputs and third-party inputs.
The EPG MAY provide visual separation between the installed inputs and third-party
inputs.

3.12.1.2. Navigation

If device implementations support TIF, they:

[C-1-1] MUST allow navigation for the following functions via the D-pad, Back, and Home
keys on the Android Television device’s input device(s) (i.e. remote control, remote control
application, or game controller):

Changing TV channels
Opening EPG
Configuring and tuning to third-party TIF-based inputs (if those inputs are
supported)
Opening Settings menu

Page 49 of 122

http://developer.android.com/reference/android/media/tv/TvContract.Channels.html
https://source.android.com/devices/tv/index.html#third-party_input_example
https://source.android.com/devices/tv/index.html#tv_inputs
https://developer.android.com/reference/android/media/tv/TvContract.Programs.html

SHOULD pass key events to HDMI inputs through CEC.

3.12.1.3. TV input app linking

Android Television device implementations SHOULD support TV input app linking , which allows all
inputs to provide activity links from the current activity to another activity (i.e. a link from live
programming to related content). The TV App SHOULD show TV input app linking when it is provided.

3.12.1.4. Time shifting

If device implementations support TIF, they:

[SR] STRONGLY RECOMMENDED to support time shifting, which allows the user to
pause and resume live content.
SHOULD provide the user a way to pause and resume the currently playing program, if
time shifting for that program is available .

3.12.1.5. TV recording

If device implementations support TIF, they:

[SR] STRONGLY RECOMMENDED to support TV recording.
If the TV input supports recording and the recording of a program is not prohibited , the
EPG MAY provide a way to record a program .

3.13. Quick Settings

Android provides a Quick Settings UI component that allows quick access to frequently used or
urgently needed actions.
If device implementations include a Quick Settings UI component, they:

[C-1-1] MUST allow the user to add or remove the tiles provided through the quicksettings
APIs from a third-party app.
[C-1-2] MUST NOT automatically add a tile from a third-party app directly to the Quick
Settings.
[C-1-3] MUST display all the user-added tiles from third-party apps alongside the system-
provided quick setting tiles.

3.14. Media UI

If device implementations include the UI framework that supports third-party apps that depend on
MediaBrowser and MediaSession , they:

[C-1-1] MUST display MediaItem icons and notification icons unaltered.
[C-1-2] MUST display those items as described by MediaSession, e.g., metadata, icons,
imagery.
[C-1-3] MUST show app title.
[C-1-4] MUST have drawer to present MediaBrowser hierarchy.
[C-1-5] MUST consider double tap of KEYCODE_HEADSETHOOK or
KEYCODE_MEDIA_PLAY_PAUSE as KEYCODE_MEDIA_NEXT for
MediaSession.Callback#onMediaButtonEvent .

Page 50 of 122

http://developer.android.com/reference/android/media/tv/TvContract.Channels.html#COLUMN_APP_LINK_INTENT_URI
https://developer.android.com/reference/android/media/tv/TvInputManager.html#TIME_SHIFT_STATUS_AVAILABLE
https://developer.android.com/reference/android/media/tv/TvContract.Programs.html#COLUMN_RECORDING_PROHIBITED
https://developer.android.com/reference/android/media/tv/TvInputInfo.html#canRecord%28%29
https://developer.android.com/reference/android/service/quicksettings/package-summary.html
http://developer.android.com/reference/android/media/browse/MediaBrowser.html
http://developer.android.com/reference/android/media/session/MediaSession.html
http://developer.android.com/reference/android/media/browse/MediaBrowser.MediaItem.html
http://developer.android.com/reference/android/media/browse/MediaBrowser.html
https://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_HEADSETHOOK
https://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_MEDIA_PLAY_PAUSE
https://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_MEDIA_NEXT
https://developer.android.com/reference/android/media/session/MediaSession.Callback.html#onMediaButtonEvent%28android.content.Intent%29

3.15. Instant Apps

Device implementations MUST satisfy the following requirements:

[C-0-1] Instant Apps MUST only be granted permissions that have the
android:protectionLevel set to "ephemeral" .
[C-0-2] Instant Apps MUST NOT interact with installed apps via implicit intents unless one
of the following is true:

The component's intent pattern filter is exposed and has
CATEGORY_BROWSABLE
The action is one of ACTION_SEND, ACTION_SENDTO,
ACTION_SEND_MULTIPLE
The target is explicitly exposed with android:visibleToInstantApps

[C-0-3] Instant Apps MUST NOT interact explicitly with installed apps unless the
component is exposed via android:visibleToInstantApps.
[C-0-4] IInstalled Apps MUST NOT see details about Instant Apps on the device unless the
Instant App explicitly connects to the installed application.

3.16. Companion Device Pairing

Android includes support for companion device pairing to more effectively manage association with
companion devices and provides the CompanionDeviceManager API for apps to access this feature.
If device implementations support the companion device pairing feature, they:

[C-1-1] MUST declare the feature flag FEATURE_COMPANION_DEVICE_SETUP .
[C-1-2] MUST ensure the APIs in the android.companion package is fully implemented.
[C-1-3] MUST provide user affordances for the user to select/confirm a companion device
is present and operational.

4. Application Packaging Compatibility

Devices implementations:

[C-0-1] MUST be capable of installing and running Android “.apk” files as generated by the
“aapt” tool included in the official Android SDK .
As the above requirement may be challenging, device implementations are
RECOMMENDED to use the AOSP reference implementation's package management
systemDevice implementations.
[C-0-2] MUST support verifying “.apk” files using the APK Signature Scheme v2 and JAR
signing .
[C-0-3] MUST NOT extend either the .apk , Android Manifest , Dalvik bytecode , or
RenderScript bytecode formats in such a way that would prevent those files from installing
and running correctly on other compatible devices.
[C-0-4] MUST NOT allow apps other than the current "installer of record" for the package
to silently uninstall the app without any prompt, as documented in the SDK for the
DELETE_PACKAGE permission. The only exceptions are the system package verifier app
handling PACKAGE_NEEDS_VERIFICATION intent and the storage manager app
handling ACTION_MANAGE_STORAGE intent.

Device implementations MUST NOT install application packages from unknown sources, unless the
app that requests the installation meets all the following requirements:

Page 51 of 122

https://developer.android.com/guide/topics/manifest/permission-element.html#plevel
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/R.attr.html#visibleToInstantApps
https://developer.android.com/reference/android/companion/CompanionDeviceManager.html
https://developer.android.com/reference/android/content/pm/PackageManager.html?#FEATURE_COMPANION_DEVICE_SETUP
https://developer.android.com/reference/android/companion/package-summary.html
http://developer.android.com/tools/help/index.html
https://source.android.com/security/apksigning/v2.html
https://source.android.com/security/apksigning/v2.html#v1-verification
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
https://android.googlesource.com/platform/dalvik/
https://developer.android.com/reference/android/Manifest.permission.html#DELETE_PACKAGES
https://developer.android.com/reference/android/content/Intent.html#ACTION_PACKAGE_NEEDS_VERIFICATION
https://developer.android.com/reference/android/os/storage/StorageManager.html#ACTION_MANAGE_STORAGE
https://developer.android.com/reference/android/content/Intent.html#ACTION_INSTALL_PACKAGE

It MUST declare the REQUEST_INSTALL_PACKAGES permission or have the
android:targetSdkVersion set at 24 or lower.
It MUST have been granted permission by the user to install apps from unknown sources.

Device implementations MUST have an activity that handles the
android.settings.MANAGE_UNKNOWN_APP_SOURCES intent. They SHOULD provide a user
affordance to grant/revoke the permission to install apps from unknown sources per application, but
MAY choose to implement this as a no-op and return RESULT_CANCELED for startActivityForResult() ,
if the device implementation does not want to allow users to have this choice. However even in such
cases, they SHOULD indicate to the user why there is no such choice presented.

5. Multimedia Compatibility

Device implementations:

[C-0-1] MUST support the media formats, encoders, decoders, file types, and container
formats defined in section 5.1 for each and every codec declared by MediaCodecList .
[C-0-2] MUST declare and report support of the encoders, decoders available to third-party
applications via MediaCodecList .
[C-0-3] MUST be able to decode and make available to third-party apps all the formats it
can encode. This includes all bitstreams that its encoders generate and the profiles
reported in its CamcorderProfile .

Device implementations:

SHOULD aim for minimum codec latency, in others words, they
SHOULD NOT consume and store input buffers and return input buffers only
once processed.
SHOULD NOT hold onto decoded buffers for longer than as specified by the
standard (e.g. SPS).
SHOULD NOT hold onto encoded buffers longer than required by the GOP
structure.

All of the codecs listed in the section below are provided as software implementations in the preferred
Android implementation from the Android Open Source Project.
Please note that neither Google nor the Open Handset Alliance make any representation that these
codecs are free from third-party patents. Those intending to use this source code in hardware or
software products are advised that implementations of this code, including in open source software or
shareware, may require patent licenses from the relevant patent holders.

5.1. Media Codecs

5.1.1. Audio Encoding

See more details in 5.1.3. Audio Codecs Details .
If device implementations declare android.hardware.microphone , they MUST support the following audio
encoding:

[C-1-1] PCM/WAVE

5.1.2. Audio Decoding

Page 52 of 122

http://developer.android.com/reference/android/Manifest.permission.html#REQUEST_INSTALL_PACKAGES
http://developer.android.com/reference/android/provider/Settings.html#ACTION_MANAGE_UNKNOWN_APP_SOURCES
http://developer.android.com/reference/android/app/Activity.html#startActivityForResult%28android.content.Intent, int%29
http://developer.android.com/reference/android/media/MediaCodecList.html
http://developer.android.com/reference/android/media/CamcorderProfile.html

See more details in 5.1.3. Audio Codecs Details .
If device implementations declare support for the android.hardware.audio.output feature, they:

[C-1-1] MPEG-4 AAC Profile (AAC LC)
[C-1-2] MPEG-4 HE AAC Profile (AAC+)
[C-1-3] MPEG-4 HE AACv2 Profile (enhanced AAC+)
[C-1-4] AAC ELD (enhanced low delay AAC)
[C-1-5] FLAC
[C-1-6] MP3
[C-1-7] MIDI
[C-1-8] Vorbis
[C-1-9] PCM/WAVE
[C-1-10] Opus

If device implementations support the decoding of AAC input buffers of multichannel streams (i.e.
more than two channels) to PCM through the default AAC audio decoder in the
android.media.MediaCodec API, the following MUST be supported:

[C-2-1] Decoding MUST be performed without downmixing (e.g. a 5.0 AAC stream must be
decoded to five channels of PCM, a 5.1 AAC stream must be decoded to six channels of
PCM).
[C-2-2] Dynamic range metadata MUST be as defined in "Dynamic Range Control (DRC)"
in ISO/IEC 14496-3, and the android.media.MediaFormat DRC keys to configure the dynamic
range-related behaviors of the audio decoder. The AAC DRC keys were introduced in API
21,and are: KEY_AAC_DRC_ATTENUATION_FACTOR,
KEY_AAC_DRC_BOOST_FACTOR, KEY_AAC_DRC_HEAVY_COMPRESSION,
KEY_AAC_DRC_TARGET_REFERENCE_LEVEL and
KEY_AAC_ENCODED_TARGET_LEVEL

5.1.3. Audio Codecs Details

Format/Codec Details
Supported File

Types/Container
Formats

MPEG-4 AAC
Profile
(AAC LC)

Support for mono/stereo/5.0/5.1 content with standard sampling
rates from 8 to 48 kHz.

3GPP (.3gp)
MPEG-4
(.mp4, .m4a)
ADTS raw
AAC (.aac,
ADIF not
supported)
MPEG-TS (.ts,
not seekable)

MPEG-4 HE
AAC Profile
(AAC+)

Support for mono/stereo/5.0/5.1 content with standard sampling
rates from 16 to 48 kHz.

MPEG-4 HE
AACv2
Profile Support for mono/stereo/5.0/5.1 content with standard sampling

rates from 16 to 48 kHz.

Page 53 of 122

(enhanced
AAC+)
AAC ELD
(enhanced low
delay AAC)

Support for mono/stereo content with standard sampling rates
from 16 to 48 kHz.

AMR-NB 4.75 to 12.2 kbps sampled @ 8 kHz 3GPP (.3gp)

AMR-WB 9 rates from 6.60 kbit/s to 23.85 kbit/s sampled @ 16 kHz

FLAC

Mono/Stereo (no multichannel). Sample rates up to 48 kHz (but
up to 44.1 kHz is RECOMMENDED on devices with 44.1 kHz
output, as the 48 to 44.1 kHz downsampler does not include a
low-pass filter). 16-bit RECOMMENDED; no dither applied for
24-bit.

FLAC (.flac) only

MP3 Mono/Stereo 8-320Kbps constant (CBR) or variable bitrate
(VBR)

MP3 (.mp3)

MIDI MIDI Type 0 and 1. DLS Version 1 and 2. XMF and Mobile XMF.
Support for ringtone formats RTTTL/RTX, OTA, and iMelody

Type 0 and 1
(.mid, .xmf,
.mxmf)
RTTTL/RTX
(.rtttl, .rtx)
OTA (.ota)
iMelody (.imy)

Vorbis

Ogg (.ogg)
Matroska
(.mkv, Android
4.0+)

PCM/WAVE
16-bit linear PCM (rates up to limit of hardware). Devices MUST
support sampling rates for raw PCM recording at 8000, 11025,
16000, and 44100 Hz frequencies.

WAVE (.wav)

Opus Matroska (.mkv),
Ogg(.ogg)

5.1.4. Image Encoding

See more details in 5.1.6. Image Codecs Details .
Device implementations MUST support encoding the following image encoding:

[C-0-1] JPEG
[C-0-2] PNG
[C-0-3] WebP

5.1.5. Image Decoding

See more details in 5.1.6. Image Codecs Details .
Device impelementations MUST support encoding the following image decoding:

[C-0-1] JPEG
[C-0-2] GIF

Page 54 of 122

[C-0-3] PNG
[C-0-4] BMP
[C-0-5] WebP
[C-0-6] Raw

5.1.6. Image Codecs Details

Format/Codec Details Supported File Types/Container Formats

JPEG Base+progressive JPEG (.jpg)

GIF GIF (.gif)

PNG PNG (.png)

BMP BMP (.bmp)

WebP WebP (.webp)

Raw ARW (.arw), CR2 (.cr2), DNG (.dng), NEF (.nef), NRW (.nrw),
ORF (.orf), PEF (.pef), RAF (.raf), RW2 (.rw2), SRW (.srw)

5.1.7. Video Codecs

For acceptable quality of web video streaming and video-conference services, device
implementations SHOULD use a hardware VP8 codec that meets the requirements .

If device implementations include a video decoder or encoder:

[C-1-1] Video codecs MUST support output and input bytebuffer sizes that accommodate
the largest feasible compressed and uncompressed frame as dictated by the standard and
configuration but also not overallocate.

[C-1-2] Video encoders and decoders MUST support YUV420 flexible color format
(COLOR_FormatYUV420Flexible).

If device implementations advertise HDR profile support through Display.HdrCapabilities , they:

[C-2-1] MUST support HDR static metadata parsing and handling.

If device implementations advertise intra refresh support through FEATURE_IntraRefresh in the
MediaCodecInfo.CodecCapabilities class, they:

[C-3-1]MUST support the refresh periods in the range of 10 - 60 frames and accurately
operate within 20% of configured refresh period.

5.1.8. Video Codecs List

Format/Codec Details Supported File Types/
Container Formats

H.263
3GPP (.3gp)
MPEG-4 (.mp4)

See section 5.2 and 5.3 for

3GPP (.3gp)
MPEG-4 (.mp4)

Page 55 of 122

http://www.webmproject.org/hardware/rtc-coding-requirements/
https://developer.android.com/reference/android/view/Display.HdrCapabilities.html
https://developer.android.com/reference/android/media/MediaCodecInfo.CodecCapabilities.html#FEATURE_IntraRefresh

H.264 AVC details MPEG-2 TS (.ts, AAC audio only, not seekable,
Android 3.0+)

H.265 HEVC See section 5.3 for details MPEG-4 (.mp4)

MPEG-2 Main Profile MPEG2-TS

MPEG-4 SP 3GPP (.3gp)

VP8 See section 5.2 and 5.3 for
details

WebM (.webm)
Matroska (.mkv)

VP9 See section 5.3 for details
WebM (.webm)
Matroska (.mkv)

5.2. Video Encoding

If device implementations support any video encoder and make it available to third-party apps, they:

SHOULD NOT be, over two sliding windows, more than ~15% over the bitrate between
intraframe (I-frame) intervals.
SHOULD NOT be more than ~100% over the bitrate over a sliding window of 1 second.

If device implementations include an embedded screen display with the diagonal length of at least 2.5
inches or include a video output port or declare the support of a camera via the
android.hardware.camera.any feature flag, they:

[C-1-1] MUST include the support of at least one of the VP8 or H.264 video encoders, and
make it available for third-party applications.
SHOULD support both VP8 and H.264 video encoders, and make it available for third-
party applications.

If device implementations support any of the H.264, VP8, VP9 or HEVC video encoders and make it
available to third-party applications, they:

[C-2-1] MUST support dynamically configurable bitrates.
SHOULD support variable frame rates, where video encoder SHOULD determine
instantaneous frame duration based on the timestamps of input buffers, and allocate its bit
bucket based on that frame duration.

If device implementations support the MPEG-4 SP video encoder and make it available to third-party
apps, they:

SHOULD support dynamically configurable bitrates for the supported encoder.

5.2.1. H.263

If device implementations support H.263 encoders and make it available to third-party apps, they:

[C-1-1] MUST support Baseline Profile Level 45.
SHOULD support dynamically configurable bitrates for the supported encoder.

5.2.2. H-264

Page 56 of 122

http://www.webmproject.org/
http://www.webmproject.org/

If device implementations support H.264 codec, they:

[C-1-1] MUST support Baseline Profile Level 3. However, support for ASO (Arbitrary Slice
Ordering), FMO (Flexible Macroblock Ordering) and RS (Redundant Slices) is OPTIONAL.
Moreover, to maintain compatibility with other Android devices, it is RECOMMENDED that
ASO, FMO and RS are not used for Baseline Profile by encoders.
[C-1-2] MUST support the SD (Standard Definition) video encoding profiles in the following
table.
SHOULD support Main Profile Level 4.
SHOULD support the HD (High Definition) video encoding profiles as indicated in the
following table.

If device implementations report support of H.264 encoding for 720p or 1080p resolution videos
through the media APIs, they:

[C-2-1] MUST support the encoding profiles in the following table.

SD (Low quality) SD (High quality) HD 720p HD 1080p

Video resolution 320 x 240 px 720 x 480 px 1280 x 720 px 1920 x 1080 px

Video frame rate 20 fps 30 fps 30 fps 30 fps

Video bitrate 384 Kbps 2 Mbps 4 Mbps 10 Mbps

5.2.3. VP8

If device implementations support VP8 codec, they:

[C-1-1] MUST support the SD video encoding profiles.
SHOULD support the following HD (High Definition) video encoding profiles.
SHOULD support writing Matroska WebM files.
SHOULD use a hardware VP8 codec that meets the WebM project RTC hardware coding
requirements , to ensure acceptable quality of web video streaming and video-conference
services.

If device implementations report support of VP8 encoding for 720p or 1080p resolution videos through
the media APIs, they:

[C-2-1] MUST support the encoding profiles in the following table.

SD (Low quality) SD (High quality) HD 720p HD 1080p

Video resolution 320 x 180 px 640 x 360 px 1280 x 720 px 1920 x 1080 px

Video frame rate 30 fps 30 fps 30 fps 30 fps

Video bitrate 800 Kbps 2 Mbps 4 Mbps 10 Mbps

5.2.4. VP9

If device implementations support VP9 codec, they:

SHOULD support writing Matroska WebM files.

Page 57 of 122

http://www.webmproject.org/hardware/rtc-coding-requirements

5.3. Video Decoding

If device implementations support VP8, VP9, H.264, or H.265 codecs, they:

[C-1-1] MUST support dynamic video resolution and frame rate switching through the
standard Android APIs within the same stream for all VP8, VP9, H.264, and H.265 codecs
in real time and up to the maximum resolution supported by each codec on the device.

If device implementations declare support for the Dolby Vision decoder through
HDR_TYPE_DOLBY_VISION , they:

[C-2-1] MUST provide a Dolby Vision-capable extractor.
[C-2-2] MUST properly display Dolby Vision content on the device screen or on a standard
video output port (e.g., HDMI).
[C-2-3] MUST set the track index of backward-compatible base-layer(s) (if present) to be
the same as the combined Dolby Vision layer's track index.

5.3.1. MPEG-2

If device implementations support MPEG-2 decoders, they:

[C-1-1] MUST support the Main Profile High Level.

5.3.2. H.263

If device implementations support H.263 decoders, they:

[C-1-1] MUST support Baseline Profile Level 30 and Level 45.

5.3.3. MPEG-4

If device implementations with MPEG-4 decoders, they:

[C-1-1] MUST support Simple Profile Level 3.

5.3.4. H.264

If device implementations support H.264 decoders, they:

[C-1-1] MUST support Main Profile Level 3.1 and Baseline Profile. Support for ASO
(Arbitrary Slice Ordering), FMO (Flexible Macroblock Ordering) and RS (Redundant Slices)
is OPTIONAL.
[C-1-2] MUST be capable of decoding videos with the SD (Standard Definition) profiles
listed in the following table and encoded with the Baseline Profile and Main Profile Level
3.1 (including 720p30).
SHOULD be capable of decoding videos with the HD (High Definition) profiles as indicated
in the following table.

If the height that is reported by the Display.getSupportedModes() method is equal or greater than the
video resolution, device implementations:

[C-2-1] MUST support the HD 720p video encoding profiles in the following table.
[C-2-2] MUST support the HD 1080p video encoding profiles in the following table.

Page 58 of 122

https://developer.android.com/reference/android/view/Display.HdrCapabilities.html#HDR_TYPE_DOLBY_VISION

SD (Low quality) SD (High quality) HD 720p HD 1080p

Video resolution 320 x 240 px 720 x 480 px 1280 x 720 px 1920 x 1080 px

Video frame rate 30 fps 30 fps 60 fps 30 fps (60 fps Television)

Video bitrate 800 Kbps 2 Mbps 8 Mbps 20 Mbps

5.3.5. H.265 (HEVC)

If device implementations support H.265 codec, they:

[C-1-1] MUST support the Main Profile Level 3 Main tier and the SD video decoding
profiles as indicated in the following table.
SHOULD support the HD decoding profiles as indicated in the following table.
[C-1-2] MUST support the HD decoding profiles as indicated in the following table if there
is a hardware decoder.

If the height that is reported by the Display.getSupportedModes() method is equal to or greater than the
video resolution, then:

[C-2-1] Device implementations MUST support at least one of H.265 or VP9 decoding of
720, 1080 and UHD profiles.

SD (Low
quality)

SD (High
quality) HD 720p HD 1080p UHD

Video
resolution

352 x 288
px 720 x 480 px 1280 x

720 px 1920 x 1080 px 3840 x
2160 px

Video
frame rate 30 fps 30 fps 30 fps 30/60 fps (60 fps Television with H.265

hardware decoding)
60 fps

Video
bitrate 600 Kbps 1.6 Mbps 4 Mbps 5 Mbps 20 Mbps

5.3.6. VP8

If device implementations support VP8 codec, they:

[C-1-1] MUST support the SD decoding profiles in the following table.
SHOULD use a hardware VP8 codec that meets the requirements .
SHOULD support the HD decoding profiles in the following table.

If the height as reported by the Display.getSupportedModes() method is equal or greater than the video
resolution, then:

[C-2-1] Device implementations MUST support 720p profiles in the following table.
[C-2-2] Device implementations MUST support 1080p profiles in the following table.

SD (Low quality) SD (High quality) HD 720p HD 1080p

Video resolution 320 x 180 px 640 x 360 px 1280 x 720 px 1920 x 1080 px

Video frame rate 30 fps 30 fps 30 fps (60 fps Television) 30 (60 fps Television)

Page 59 of 122

Video bitrate 800 Kbps 2 Mbps 8 Mbps 20 Mbps

5.3.7. VP9

If device implementations support VP9 codec, they:

[C-1-1] MUST support the SD video decoding profiles as indicated in the following table.
SHOULD support the HD decoding profiles as indicated in the following table.

If device implementations support VP9 codec and a hardware decoder:

[C-2-2] MUST support the HD decoding profiles as indicated in the following table.

If the height that is reported by the Display.getSupportedModes() method is equal to or greater than the
video resolution, then:

[C-3-1] Device implementations MUST support at least one of VP9 or H.265 decoding of
the 720, 1080 and UHD profiles.

SD (Low
quality)

SD (High
quality) HD 720p HD 1080p UHD

Video
resolution 320 x 180 px 640 x 360 px 1280 x

720 px 1920 x 1080 px 3840 x
2160 px

Video frame
rate 30 fps 30 fps 30 fps

30 fps (60 fps Television with VP9

hardware decoding) 60 fps

Video
bitrate 600 Kbps 1.6 Mbps 4 Mbps 5 Mbps 20 Mbps

5.4. Audio Recording

While some of the requirements outlined in this section are listed as SHOULD since Android 4.3, the
Compatibility Definition for future versions are planned to change these to MUST. Existing and new
Android devices are STRONGLY RECOMMENDED to meet these requirements that are listed as
SHOULD, or they will not be able to attain Android compatibility when upgraded to the future version.

5.4.1. Raw Audio Capture

If device implementations declare android.hardware.microphone , they:

[C-1-1] MUST allow capture of raw audio content with the following characteristics:

Format : Linear PCM, 16-bit
Sampling rates : 8000, 11025, 16000, 44100 Hz

Channels : Mono

[C-1-2] MUST capture at above sample rates without up-sampling.
[C-1-3] MUST include an appropriate anti-aliasing filter when the sample rates given above
are captured with down-sampling.

SHOULD allow AM radio and DVD quality capture of raw audio content, which means the
following characteristics:

Format : Linear PCM, 16-bit

Page 60 of 122

Sampling rates : 22050, 48000 Hz
Channels : Stereo

If device implementations allow AM radio and DVD quality capture of raw audio content, they:

[C-2-1] MUST capture without up-sampling at any ratio higher than 16000:22050 or
44100:48000.
[C-2-2] MUST include an appropriate anti-aliasing filter for any up-sampling or down-
sampling.

5.4.2. Capture for Voice Recognition

If device implementations declare android.hardware.microphone , they:

[C-1-1] MUST capture android.media.MediaRecorder.AudioSource.VOICE_RECOGNITION
audio source at one of the sampling rates, 44100 and 48000.
[C-1-2] MUST, by default, disable any noise reduction audio processing when recording an
audio stream from the AudioSource.VOICE_RECOGNITION audio source.
[C-1-3] MUST, by default, disable any automatic gain control when recording an audio
stream from the AudioSource.VOICE_RECOGNITION audio source.
SHOULD record the voice recognition audio stream with approximately flat amplitude
versus frequency characteristics: specifically, ±3 dB, from 100 Hz to 4000 Hz.
SHOULD record the voice recognition audio stream with input sensitivity set such that a 90
dB sound power level (SPL) source at 1000 Hz yields RMS of 2500 for 16-bit samples.
SHOULD record the voice recognition audio stream so that the PCM amplitude levels
linearly track input SPL changes over at least a 30 dB range from -18 dB to +12 dB re 90
dB SPL at the microphone.
SHOULD record the voice recognition audio stream with total harmonic distortion (THD)
less than 1% for 1 kHz at 90 dB SPL input level at the microphone.

If device impelementations declare android.hardware.microphone and noise suppression (reduction)
technologies tuned for speech recognition, they:

[C-2-1] MUST allow this audio affect to be controllable with the
android.media.audiofx.NoiseSuppressor API.
[C-2-2] MUST uniquely identfiy each noise suppression technology implementation via the
AudioEffect.Descriptor.uuid field.

5.4.3. Capture for Rerouting of Playback

The android.media.MediaRecorder.AudioSource class includes the REMOTE_SUBMIX audio source.
If device implementations declare both android.hardware.audio.output and android.hardware.microphone ,
they:

[C-1-1] MUST properly implement the REMOTE_SUBMIX audio source so that when an
application uses the android.media.AudioRecord API to record from this audio source, it
captures a mix of all audio streams except for the following:

AudioManager.STREAM_RING
AudioManager.STREAM_ALARM
AudioManager.STREAM_NOTIFICATION

Page 61 of 122

5.5. Audio Playback

Android includes the support to allow apps to playback audio through the audio output peripheral as
defined in section 7.8.2.

5.5.1. Raw Audio Playback

If device implementations declare android.hardware.audio.output , they:

[C-1-1] MUST allow playback of raw audio content with the following characteristics:
Format : Linear PCM, 16-bit
Sampling rates : 8000, 11025, 16000, 22050, 32000, 44100
Channels : Mono, Stereo

SHOULD allow playback of raw audio content with the following characteristics:
Sampling rates : 24000, 48000

5.5.2. Audio Effects

Android provides an API for audio effects for device implementations.
If device implementations declare the feature android.hardware.audio.output , they:

[C-1-1] MUST support the EFFECT_TYPE_EQUALIZER and
EFFECT_TYPE_LOUDNESS_ENHANCER implementations controllable through the
AudioEffect subclasses Equalizer , LoudnessEnhancer .
[C-1-2] MUST support the visualizer API implementation, controllable through the
Visualizer class.
SHOULD support the EFFECT_TYPE_BASS_BOOST , EFFECT_TYPE_ENV_REVERB ,
EFFECT_TYPE_PRESET_REVERB , and EFFECT_TYPE_VIRTUALIZER implementations
controllable through the AudioEffect sub-classes BassBoost , EnvironmentalReverb ,
PresetReverb , and Virtualizer .

5.5.3. Audio Output Volume

Automotive device implementations:

SHOULD allow adjusting audio volume separately per each audio stream using the content
type or usage as defined by AudioAttributes and car audio usage as publicly defined in
android.car.CarAudioManager .

5.6. Audio Latency

Audio latency is the time delay as an audio signal passes through a system. Many classes of
applications rely on short latencies, to achieve real-time sound effects.
For the purposes of this section, use the following definitions:

output latency . The interval between when an application writes a frame of PCM-coded
data and when the corresponding sound is presented to environment at an on-device
transducer or signal leaves the device via a port and can be observed externally.
cold output latency . The output latency for the first frame, when the audio output system
has been idle and powered down prior to the request.
continuous output latency . The output latency for subsequent frames, after the device is

Page 62 of 122

http://developer.android.com/reference/android/media/audiofx/AudioEffect.html

playing audio.
input latency . The interval between when a sound is presented by environment to device
at an on-device transducer or signal enters the device via a port and when an application
reads the corresponding frame of PCM-coded data.
lost input . The initial portion of an input signal that is unusable or unavailable.
cold input latency . The sum of lost input time and the input latency for the first frame,
when the audio input system has been idle and powered down prior to the request.
continuous input latency . The input latency for subsequent frames, while the device is
capturing audio.
cold output jitter . The variability among separate measurements of cold output latency
values.
cold input jitter . The variability among separate measurements of cold input latency
values.
continuous round-trip latency . The sum of continuous input latency plus continuous
output latency plus one buffer period. The buffer period allows time for the app to process
the signal and time for the app to mitigate phase difference between input and output
streams.
OpenSL ES PCM buffer queue API . The set of PCM-related OpenSL ES APIs within
Android NDK .
AAudio native audio API . The set of AAudio APIs within Android NDK .

If device implementations declare android.hardware.audio.output they are STRONGLY
RECOMMENDED to meet or exceed the following requirements:

[SR] Cold output latency of 100 milliseconds or less
[SR] Continuous output latency of 45 milliseconds or less
[SR] Minimize the cold output jitter

If device implementations meet the above requirements after any initial calibration when using the
OpenSL ES PCM buffer queue API, for continuous output latency and cold output latency over at least
one supported audio output device, they are:

[SR] STRONGLY RECOMMENDED to report low latency audio by declaring
android.hardware.audio.low_latency feature flag.
[SR] STRONGLY RECOMMENDED to also meet the requirements for low-latency audio
via the AAudio API.

If device implementations do not meet the requirements for low-latency audio via the OpenSL ES
PCM buffer queue API, they:

[C-1-1] MUST NOT report support for low-latency audio.

If device implementations include android.hardware.microphone , they are STRONGLY
RECOMMENDED to meet these input audio requirements:

[SR] Cold input latency of 100 milliseconds or less
[SR] Continuous input latency of 30 milliseconds or less
[SR] Continuous round-trip latency of 50 milliseconds or less
[SR] Minimize the cold input jitter

5.7. Network Protocols

Page 63 of 122

https://developer.android.com/ndk/guides/audio/opensl/index.html
https://developer.android.com/ndk/index.html
https://developer.android.com/ndk/guides/audio/aaudio/aaudio.html
https://developer.android.com/ndk/index.html

Device implementations MUST support the media network protocols for audio and video playback as
specified in the Android SDK documentation.
If device implementations include an audio or a video decoder, they:

[C-1-1] MUST support all required codecs and container formats in section 5.1 over
HTTP(S).

[C-1-2] MUST support the media segment formats shown in the Media Segmant Formats
table below over HTTP Live Streaming draft protocol, Version 7 .

[C-1-3] MUST support the following RTP audio video profile and related codecs in the
RTSP table below. For exceptions please see the table footnotes in section 5.1 .

Media Segment Formats

Segment formats Reference(s) Required codec support

MPEG-2 Transport Stream ISO 13818

Video codecs:

H264 AVC
MPEG-4 SP
MPEG-2

See section 5.1.3 for details on H264 AVC,
MPEG2-4 SP,
and MPEG-2.
Audio codecs:

AAC

See section 5.1.1 for details on AAC and its
variants.

AAC with ADTS framing and ID3
tags ISO 13818-7 See section 5.1.1 for details on AAC and its

variants

WebVTT WebVTT

RTSP (RTP, SDP)

Profile name Reference(s) Required codec support

H264 AVC RFC 6184 See section 5.1.3 for details on H264 AVC

MP4A-LATM RFC 6416 See section 5.1.1 for details on AAC and its variants

H263-1998
RFC 3551
RFC 4629
RFC 2190

See section 5.1.3 for details on H263

H263-2000 RFC 4629 See section 5.1.3 for details on H263

AMR RFC 4867 See section 5.1.1 for details on AMR-NB

AMR-WB RFC 4867 See section 5.1.1 for details on AMR-WB

MP4V-ES RFC 6416 See section 5.1.3 for details on MPEG-4 SP

mpeg4-
generic RFC 3640 See section 5.1.1 for details on AAC and its variants

See MPEG-2 Transport Stream underneath HTTP Live Streaming for

Page 64 of 122

http://developer.android.com/guide/appendix/media-formats.html
http://tools.ietf.org/html/draft-pantos-http-live-streaming-07
http://www.iso.org/iso/catalogue_detail?csnumber=44169
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=43345
http://dev.w3.org/html5/webvtt/
https://tools.ietf.org/html/rfc6184
https://tools.ietf.org/html/rfc6416
https://tools.ietf.org/html/rfc3551
https://tools.ietf.org/html/rfc4629
https://tools.ietf.org/html/rfc2190
https://tools.ietf.org/html/rfc4629
https://tools.ietf.org/html/rfc4867
https://tools.ietf.org/html/rfc4867
https://tools.ietf.org/html/rfc6416
https://tools.ietf.org/html/rfc3640

MP2T RFC 2250 details

5.8. Secure Media

If device implementations support secure video output and are capable of supporting secure surfaces,
they:

[C-1-1] MUST declare support for Display.FLAG_SECURE .

If device implementations declare support for Display.FLAG_SECURE and support wireless display
protocol, they:

[C-2-1] MUST secure the link with a cryptographically strong mechanism such as HDCP
2.x or higher for the displays connected through wireless protocols such as Miracast.

If device implementations declare support for Display.FLAG_SECURE and support wired external
display, they:

[C-3-1] MUST support HDCP 1.2 or higher for all wired external displays.

5.9. Musical Instrument Digital Interface (MIDI)

If device implementations report support for feature android.software.midi via the
android.content.pm.PackageManager class, they:

[C-1-1] MUST support MIDI over all MIDI-capable hardware transports for which they
provide generic non-MIDI connectivity, where such transports are:

USB host mode, section 7.7
USB peripheral mode, section 7.7
MIDI over Bluetooth LE acting in central role, section 7.4.3

[C-1-2] MUST support the inter-app MIDI software transport (virtual MIDI devices)

5.10. Professional Audio

If device implementations report support for feature android.hardware.audio.pro via the
android.content.pm.PackageManager class, they:

[C-1-1] MUST report support for feature android.hardware.audio.low_latency .
[C-1-2] MUST have the continuous round-trip audio latency, as defined in section 5.6
Audio Latency , MUST be 20 milliseconds or less and SHOULD be 10 milliseconds or less
over at least one supported path.
[C-1-3] MUST include a USB port(s) supporting USB host mode and USB peripheral
mode.
[C-1-4] MUST report support for feature android.software.midi .
[C-1-5] MUST meet latencies and USB audio requirements using the OpenSL ES PCM
buffer queue API.
[SR] Are STRONGLY RECOMMENDED to provide a consistent level of CPU performance
while audio is active and CPU load is varying. This should be tested using SimpleSynth
commit 1bd6391 . The SimpleSynth app needs to be run with below parameters and
achieve zero underruns after 10 minutes:

Work cycles: 200,000

Page 65 of 122

https://tools.ietf.org/html/rfc2250
http://developer.android.com/reference/android/content/pm/PackageManager.html
http://developer.android.com/reference/android/content/pm/PackageManager.html
https://developer.android.com/ndk/guides/audio/opensl-for-android.html
https://github.com/googlesamples/android-audio-high-performance/tree/master/SimpleSynth
https://github.com/googlesamples/android-audio-high-performance/commit/1bd6391f8ba9512f9f8798e979bc55b899f856d1

Variable load: ON (this will switch between 100% and 10% of the work cycles
value every 2 seconds and is designed to test CPU governor behavior)
Stabilized load: OFF

SHOULD minimize audio clock inaccuracy and drift relative to standard time.
SHOULD minimize audio clock drift relative to the CPU CLOCK_MONOTONIC when both
are active.
SHOULD minimize audio latency over on-device transducers.
SHOULD minimize audio latency over USB digital audio.
SHOULD document audio latency measurements over all paths.
SHOULD minimize jitter in audio buffer completion callback entry times, as this affects
usable percentage of full CPU bandwidth by the callback.
SHOULD provide zero audio underruns (output) or overruns (input) under normal use at
reported latency.
SHOULD provide zero inter-channel latency difference.
SHOULD minimize MIDI mean latency over all transports.
SHOULD minimize MIDI latency variability under load (jitter) over all transports.
SHOULD provide accurate MIDI timestamps over all transports.
SHOULD minimize audio signal noise over on-device transducers, including the period
immediately after cold start.
SHOULD provide zero audio clock difference between the input and output sides of
corresponding end-points, when both are active. Examples of corresponding end-points
include the on-device microphone and speaker, or the audio jack input and output.
SHOULD handle audio buffer completion callbacks for the input and output sides of
corresponding end-points on the same thread when both are active, and enter the output
callback immediately after the return from the input callback. Or if it is not feasible to
handle the callbacks on the same thread, then enter the output callback shortly after
entering the input callback to permit the application to have a consistent timing of the input
and output sides.
SHOULD minimize the phase difference between HAL audio buffering for the input and
output sides of corresponding end-points.
SHOULD minimize touch latency.
SHOULD minimize touch latency variability under load (jitter).

If device implementations meet all of the above requirements, they:

[SR] STRONGLY RECOMMENDED to report support for feature android.hardware.audio.pro
via the android.content.pm.PackageManager class.

If device implementations meet the requirements via the OpenSL ES PCM buffer queue API, they:

[SR] STRONGLY RECOMMENDED to also meet the same requirements via the AAudio
API.

If device implementations include a 4 conductor 3.5mm audio jack, they:

[C-2-1] MUST have the continuous round-trip audio latency to be 20 milliseconds or less
over the audio jack path.
[SR] STRONGLY RECOMMENDED to comply with section Mobile device (jack)
specifications of the Wired Audio Headset Specification (v1.1) .
The continuous round-trip audio latency SHOULD be 10 milliseconds or less over the audio
jack path.

Page 66 of 122

http://developer.android.com/reference/android/content/pm/PackageManager.html
https://developer.android.com/ndk/guides/audio/aaudio/aaudio.html
https://source.android.com/devices/accessories/headset/jack-headset-spec
https://source.android.com/devices/accessories/headset/plug-headset-spec

If device implementations omit a 4 conductor 3.5mm audio jack and include a USB port(s) supporting
USB host mode, they:

[C-3-1] MUST implement the USB audio class.
[C-3-2] MUST have a continuous round-trip audio latency of 20 milliseconds or less over
the USB host mode port using USB audio class.
The continuous round-trip audio latency SHOULD be 10 milliseconds or less over the USB
host mode port using USB audio class.

If device implementations include an HDMI port, they:

[C-4-1] MUST support output in stereo and eight channels at 20-bit or 24-bit depth and 192
kHz without bit-depth loss or resampling.

5.11. Capture for Unprocessed

Android includes support for recording of unprocessed audio via the
android.media.MediaRecorder.AudioSource.UNPROCESSED audio source. In OpenSL ES, it can be
accessed with the record preset SL_ANDROID_RECORDING_PRESET_UNPROCESSED .
If device implementations intent to support unprocessed audio source and make it available to third-
party apps, they:

[C-1-1] MUST report the support through the android.media.AudioManager property
PROPERTY_SUPPORT_AUDIO_SOURCE_UNPROCESSED .

[C-1-2] MUST exhibit approximately flat amplitude-versus-frequency characteristics in the
mid-frequency range: specifically ±10dB from 100 Hz to 7000 Hz for each and every
microphone used to record the unprocessed audio source.

[C-1-3] MUST exhibit amplitude levels in the low frequency range: specifically from ±20 dB
from 5 Hz to 100 Hz compared to the mid-frequency range for each and every microphone
used to record the unprocessed audio source.

[C-1-4] MUST exhibit amplitude levels in the high frequency range: specifically from ±30
dB from 7000 Hz to 22 KHz compared to the mid-frequency range for each and every
microphone used to record the unprocessed audio source.

[C-1-5] MUST set audio input sensitivity such that a 1000 Hz sinusoidal tone source
played at 94 dB Sound Pressure Level (SPL) yields a response with RMS of 520 for 16 bit-
samples (or -36 dB Full Scale for floating point/double precision samples) for each and
every microphone used to record the unprocessed audio source.

[C-1-6] MUST have a signal-to-noise ratio (SNR) at 60 dB or higher for each and every
microphone used to record the unprocessed audio source. (whereas the SNR is measured
as the difference between 94 dB SPL and equivalent SPL of self noise, A-weighted).

[C-1-7] MUST have a total harmonic distortion (THD) less than be less than 1% for 1 kHZ
at 90 dB SPL input level at each and every microphone used to record the unprocessed
audio source.

MUST not have any other signal processing (e.g. Automatic Gain Control, High Pass Filter,
or Echo cancellation) in the path other than a level multiplier to bring the level to desired
range. In other words:
[C-1-8] If any signal processing is present in the architecture for any reason, it MUST be
disabled and effectively introduce zero delay or extra latency to the signal path.
[C-1-9] The level multiplier, while allowed to be on the path, MUST NOT introduce delay or
latency to the signal path.

Page 67 of 122

http://developer.android.com/reference/android/media/AudioManager.html#PROPERTY_SUPPORT_AUDIO_SOURCE_UNPROCESSED

All SPL measurements are made directly next to the microphone under test. For multiple microphone
configurations, these requirements apply to each microphone.
If device implementations declare android.hardware.microphone but do not support unprocessed audio
source, they:

[C-2-1] MUST return null for the
AudioManager.getProperty(PROPERTY_SUPPORT_AUDIO_SOURCE_UNPROCESSED) API
method, to properly indicate the lack of support.
[SR] are still STRONGLY RECOMMENDED to satisfy as many of the requirements for the
signal path for the unprocessed recording source.

6. Developer Tools and Options Compatibility

6.1. Developer Tools

Device implementations:

[C-0-1] MUST support the Android Developer Tools provided in the Android SDK.

Android Debug Bridge (adb)
[C-0-2] MUST support all adb functions as documented in the Android SDK
including dumpsys .
[C-0-3] MUST NOT alter the format or the contents of device system events
(batterystats , diskstats, fingerprint, graphicsstats, netstats, notification,
procstats) logged via dumpsys.
[C-0-4] MUST have the device-side adb daemon be inactive by default and
there MUST be a user-accessible mechanism to turn on the Android Debug
Bridge.
[C-0-5] MUST support secure adb. Android includes support for secure adb.
Secure adb enables adb on known authenticated hosts.

[C-0-6] MUST provide a mechanism allowing adb to be connected from a host
machine. For example:

Device implementations without a USB port supporting peripheral
mode MUST implement adb via local-area network (such as
Ethernet or Wi-Fi).
MUST provide drivers for Windows 7, 9 and 10, allowing developers
to connect to the device using the adb protocol.

Dalvik Debug Monitor Service (ddms)
[C-0-7] MUST support all ddms features as documented in the Android SDK.
As ddms uses adb, support for ddms SHOULD be inactive by default, but
MUST be supported whenever the user has activated the Android Debug
Bridge, as above.

Monkey
[C-0-8] MUST include the Monkey framework and make it available for
applications to use.

SysTrace
[C-0-9] MUST support systrace tool as documented in the Android SDK.
Systrace must be inactive by default and there MUST be a user-accessible
mechanism to turn on Systrace.

6.2. Developer Options

Page 68 of 122

http://developer.android.com/tools/help/adb.html
https://source.android.com/devices/input/diagnostics.html
http://developer.android.com/tools/debugging/ddms.html
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/systrace.html

Android includes support for developers to configure application development-related settings.
Device implementations MUST provide a consistent experience for Developer Options, they:

[C-0-1] MUST honor the android.settings.APPLICATION_DEVELOPMENT_SETTINGS
intent to show application development-related settings. The upstream Android
implementation hides the Developer Options menu by default and enables users to launch
Developer Options after pressing seven (7) times on the Settings > About Device > Build
Number menu item.
[C-0-2] MUST hide Developer Options by default and MUST provide a mechanism to
enable Developer Options without the need for any special whitelisting.
MAY temporarily limit access to the Developer Options menu, by visually hiding or
disabling the menu, to prevent distraction for scenarios where the safety of the user is of
concern.

7. Hardware Compatibility

If a device includes a particular hardware component that has a corresponding API for third-party
developers:

[C-0-1] The device implementation MUST implement that API as described in the Android
SDK documentation.

If an API in the SDK interacts with a hardware component that is stated to be optional and the device
implementation does not possess that component:

[C-0-2] Complete class definitions (as documented by the SDK) for the component APIs
MUST still be presented.
[C-0-3] The API’s behaviors MUST be implemented as no-ops in some reasonable
fashion.
[C-0-4] API methods MUST return null values where permitted by the SDK documentation.
[C-0-5] API methods MUST return no-op implementations of classes where null values are
not permitted by the SDK documentation.
[C-0-6] API methods MUST NOT throw exceptions not documented by the SDK
documentation.
[C-0-7] Device implementations MUST consistently report accurate hardware configuration
information via the getSystemAvailableFeatures() and hasSystemFeature(String) methods on
the android.content.pm.PackageManager class for the same build fingerprint.

A typical example of a scenario where these requirements apply is the telephony API: Even on non-
phone devices, these APIs must be implemented as reasonable no-ops.

7.1. Display and Graphics

Android includes facilities that automatically adjust application assets and UI layouts appropriately for
the device to ensure that third-party applications run well on a variety of hardware configurations .
Devices MUST properly implement these APIs and behaviors, as detailed in this section.
The units referenced by the requirements in this section are defined as follows:

physical diagonal size . The distance in inches between two opposing corners of the
illuminated portion of the display.
dots per inch (dpi) . The number of pixels encompassed by a linear horizontal or vertical
span of 1”. Where dpi values are listed, both horizontal and vertical dpi must fall within the

Page 69 of 122

http://developer.android.com/reference/android/provider/Settings.html#ACTION_APPLICATION_DEVELOPMENT_SETTINGS
http://developer.android.com/reference/android/content/pm/PackageManager.html
http://developer.android.com/guide/practices/screens_support.html

range.
aspect ratio . The ratio of the pixels of the longer dimension to the shorter dimension of
the screen. For example, a display of 480x854 pixels would be 854/480 = 1.779, or roughly
“16:9”.
density-independent pixel (dp) . The virtual pixel unit normalized to a 160 dpi screen,
calculated as: pixels = dps * (density/160).

7.1.1. Screen Configuration

7.1.1.1. Screen Size

The Android UI framework supports a variety of different logical screen layout sizes, and allows
applications to query the current configuration's screen layout size via Configuration.screenLayout with
the SCREENLAYOUT_SIZE_MASK and Configuration.smallestScreenWidthDp .

[C-0-1] Device implementations MUST report the correct layout size for the
Configuration.screenLayout as defined in the Android SDK documentation. Specifically,
device implementations MUST report the correct logical density-independent pixel (dp)
screen dimensions as below:

Devices with the Configuration.uiMode set as any value other than
UI_MODE_TYPE_WATCH, and reporting a small size for the
Configuration.screenLayout , MUST have at least 426 dp x 320 dp.
Devices reporting a normal size for the Configuration.screenLayout , MUST have
at least 480 dp x 320 dp.
Devices reporting a large size for the Configuration.screenLayout , MUST have at
least 640 dp x 480 dp.
Devices reporting a xlarge size for the Configuration.screenLayout , MUST have
at least 960 dp x 720 dp.

[C-0-2] Device implementations MUST correctly honor applications' stated support for
screen sizes through the < supports-screens > attribute in the AndroidManifest.xml, as
described in the Android SDK documentation.

7.1.1.2. Screen Aspect Ratio

While there is no restriction to the screen aspect ratio value of the physical screen display, the screen
aspect ratio of the logical display that third-party apps are rendered within, as can be derived from the
height and width values reported through the view.Display APIs and Configuration API, MUST meet
the following requirements:

[C-0-1] Device implementations with the Configuration.uiMode set as
UI_MODE_TYPE_NORMAL MUST have an aspect ratio value between 1.3333 (4:3) and
1.86 (roughly 16:9), unless the app can be deemed as ready to be stretched longer by
meeting one of the following conditions:

The app has declared that it supports a larger screen aspect ratio through the
android.max_aspect metadata value.
The app declares it is resizeable via the android:resizeableActivity attribute.
The app is targeting API level 26 or higher and does not declare a
android:MaxAspectRatio that would restrict the allowed aspect ratio.

[C-0-2] Device implementations with the Configuration.uiMode set as
UI_MODE_TYPE_WATCH MUST have an aspect ratio value set as 1.0 (1:1).

Page 70 of 122

https://developer.android.com/guide/topics/manifest/supports-screens-element.html
https://developer.android.com/reference/android/view/Display.html
https://developer.android.com/reference/android/content/res/Configuration.html
https://developer.android.com/guide/practices/screens_support.html#MaxAspectRatio
https://developer.android.com/guide/topics/ui/multi-window.html#configuring
https://developer.android.com/reference/android/R.attr.html#maxAspectRatio

7.1.1.3. Screen Density

The Android UI framework defines a set of standard logical densities to help application developers
target application resources.

[C-0-1] By default, device implementations MUST report only one of the following logical
Android framework densities through the DENSITY_DEVICE_STABLE API and this value
MUST NOT change at any time; however, the device MAY report a different arbitrary
density according to the display configuration changes made by the user (for example,
display size) set after initial boot.

120 dpi (ldpi)
160 dpi (mdpi)
213 dpi (tvdpi)
240 dpi (hdpi)
260 dpi (260dpi)
280 dpi (280dpi)
300 dpi (300dpi)
320 dpi (xhdpi)
340 dpi (340dpi)
360 dpi (360dpi)
400 dpi (400dpi)
420 dpi (420dpi)
480 dpi (xxhdpi)
560 dpi (560dpi)
640 dpi (xxxhdpi)

Device implementations SHOULD define the standard Android framework density that is
numerically closest to the physical density of the screen, unless that logical density pushes
the reported screen size below the minimum supported. If the standard Android framework
density that is numerically closest to the physical density results in a screen size that is
smaller than the smallest supported compatible screen size (320 dp width), device
implementations SHOULD report the next lowest standard Android framework density.

If there is an affordance to change the display size of the device:

[C-1-1] The display size MUST NOT be scaled any larger than 1.5 times the native density
or produce an effective minimum screen dimension smaller than 320dp (equivalent to
resource qualifier sw320dp), whichever comes first.
[C-1-2] Display size MUST NOT be scaled any smaller than 0.85 times the native density.
To ensure good usability and consistent font sizes, it is RECOMMENDED that the
following scaling of Native Display options be provided (while complying with the limits
specified above)
Small: 0.85x
Default: 1x (Native display scale)
Large: 1.15x
Larger: 1.3x
Largest 1.45x

7.1.2. Display Metrics

If device implementations include a screen or video output, they:

Page 71 of 122

https://developer.android.com/reference/android/util/DisplayMetrics.html#DENSITY_DEVICE_STABLE

[C-1-1] MUST report correct values for all display metrics defined in the
android.util.DisplayMetrics API.

If device implementations does not include an embedded screen or video output, they:

[C-2-1] MUST report reasonable values for all display metrics defined in the
android.util.DisplayMetrics API for the emulated default view.Display .

7.1.3. Screen Orientation

Device implementations:

[C-0-1] MUST report which screen orientations they support (
android.hardware.screen.portrait and/or android.hardware.screen.landscape) and MUST report at
least one supported orientation. For example, a device with a fixed orientation landscape
screen, such as a television or laptop, SHOULD only report
android.hardware.screen.landscape .
[C-0-2] MUST report the correct value for the device’s current orientation, whenever
queried via the android.content.res.Configuration.orientation ,
android.view.Display.getOrientation() , or other APIs.

If device implementations support both screen orientations, they:

[C-1-1] MUST support dynamic orientation by applications to either portrait or landscape
screen orientation. That is, the device must respect the application’s request for a specific
screen orientation.
[C-1-2] MUST NOT change the reported screen size or density when changing orientation.
MAY select either portrait or landscape orientation as the default.

7.1.4. 2D and 3D Graphics Acceleration

7.1.4.1 OpenGL ES

Device implementations:

[C-0-1] MUST correctly identify the supported OpenGL ES versions (1.1, 2.0, 3.0, 3.1, 3.2)
through the managed APIs (such as via the GLES10.getString() method) and the native
APIs.
[C-0-2] MUST include the support for all the corresponding managed APIs and native APIs
for every OpenGL ES versions they identified to support.

If device implementations include a screen or video output, they:

[C-1-1] MUST support both OpenGL ES 1.0 and 2.0, as embodied and detailed in the
Android SDK documentation .
[SR] are STRONGLY RECOMMENDED to support OpenGL ES 3.0.
SHOULD support OpenGL ES 3.1 or 3.2.

If device implementations support any of the OpenGL ES versions, they:

[C-2-1] MUST report via the OpenGL ES managed APIs and native APIs any other
OpenGL ES extensions they have implemented, and conversely MUST NOT report
extension strings that they do not support.

Page 72 of 122

https://developer.android.com/reference/android/util/DisplayMetrics.html
https://developer.android.com/reference/android/util/DisplayMetrics.html
https://developer.android.com/guide/topics/graphics/opengl.html

[C-2-2] MUST support the EGL_KHR_image , EGL_KHR_image_base ,
EGL_ANDROID_image_native_buffer , EGL_ANDROID_get_native_client_buffer ,
EGL_KHR_wait_sync , EGL_KHR_get_all_proc_addresses , EGL_ANDROID_presentation_time
, EGL_KHR_swap_buffers_with_damage and EGL_ANDROID_recordable extensions.
[SR] are STRONGLY RECOMMENDED to support EGL_KHR_partial_update.
SHOULD accurately report via the getString() method, any texture compression format that
they support, which is typically vendor-specific.

If device implementations declare support for OpenGL ES 3.0, 3.1, or 3.2, they:

[C-3-1] MUST export the corresponding function symbols for these version in addition to
the OpenGL ES 2.0 function symbols in the libGLESv2.so library.

If device implementations support OpenGL ES 3.2, they:

[C-4-1] MUST support the OpenGL ES Android Extension Pack in its entirety.

If device implementations support the OpenGL ES Android Extension Pack in its entirety, they:

[C-5-1] MUST identify the support through the android.hardware.opengles.aep feature flag.

If device implementations expose support for the EGL_KHR_mutable_render_buffer extension, they:

[C-6-1] MUST also support the EGL_ANDROID_front_buffer_auto_refresh extension.

7.1.4.2 Vulkan

Android includes support for Vulkan , a low-overhead, cross-platform API for high-performance 3D
graphics.
If device implementations support OpenGL ES 3.0 or 3.1, they:

[SR] Are STRONGLY RECOMMENDED to include support for Vulkan 1.0 .

If device implementations include a screen or video output, they:

SHOULD include support for Vulkan 1.0.

Device implementations, if including support for Vulkan 1.0:

[C-1-1] MUST report the correct integer value with the android.hardware.vulkan.level and
android.hardware.vulkan.version feature flags.
[C-1-2] MUST enumarate, at least one VkPhysicalDevice for the Vulkan native API
vkEnumeratePhysicalDevices() .
[C-1-3] MUST fully implement the Vulkan 1.0 APIs for each enumerated VkPhysicalDevice .
[C-1-4] MUST enumerate layers, contained in native libraries named as libVkLayer*.so in
the application package’s native library directory, through the Vulkan native APIs
vkEnumerateInstanceLayerProperties() and vkEnumerateDeviceLayerProperties() .
[C-1-5] MUST NOT enumerate layers provided by libraries outside of the application
package, or provide other ways of tracing or intercepting the Vulkan API, unless the
application has the android:debuggable attribute set as true .
[C-1-6] MUST report all extension strings that they do support via the Vulkan native APIs ,
and conversely MUST NOT report extension strings that they do not correctly support.

Page 73 of 122

https://developer.android.com/reference/android/opengl/GLES31Ext.html
https://www.khronos.org/registry/vulkan/specs/1.0-wsi&lowbarextensions/xhtml/vkspec.html
https://www.khronos.org/registry/vulkan/specs/1.0/man/html/vkEnumeratePhysicalDevices.html
https://www.khronos.org/registry/vulkan/specs/1.0/man/html/vkEnumerateInstanceLayerProperties.html
https://www.khronos.org/registry/vulkan/specs/1.0/man/html/vkEnumerateDeviceLayerProperties.html

Device implementations, if not including support for Vulkan 1.0:

[C-2-1] MUST NOT declare any of the Vulkan feature flags (e.g.
android.hardware.vulkan.level , android.hardware.vulkan.version).
[C-2-2] MUST NOT enumarate any VkPhysicalDevice for the Vulkan native API
vkEnumeratePhysicalDevices() .

7.1.4.3 RenderScript

[C-0-1] Device implementations MUST support Android RenderScript , as detailed in the
Android SDK documentation.

7.1.4.4 2D Graphics Acceleration

Android includes a mechanism for applications to declare that they want to enable hardware
acceleration for 2D graphics at the Application, Activity, Window, or View level through the use of a
manifest tag android:hardwareAccelerated or direct API calls.
Device implementations:

[C-0-1] MUST enable hardware acceleration by default, and MUST disable hardware
acceleration if the developer so requests by setting android:hardwareAccelerated="false”
or disabling hardware acceleration directly through the Android View APIs.
[C-0-2] MUST exhibit behavior consistent with the Android SDK documentation on
hardware acceleration .

Android includes a TextureView object that lets developers directly integrate hardware-accelerated
OpenGL ES textures as rendering targets in a UI hierarchy.

[C-0-3] MUST support the TextureView API, and MUST exhibit consistent behavior with the
upstream Android implementation.

7.1.4.5 Wide-gamut Displays

If device implementations claim support for wide-gamut displays through Display.isWideColorGamut() ,
they:

[C-1-1] MUST have a color-calibrated display.
[C-1-2] MUST have a display whose gamut covers the sRGB color gamut entirely in CIE
1931 xyY space.
[C-1-3] MUST have a display whose gamut has an area of at least 90% of NTSC 1953 in
CIE 1931 xyY space.
[C-1-4] MUST support OpenGL ES 3.0, 3.1, or 3.2 and report it properly.
[C-1-5] MUST advertise support for the EGL_KHR_no_config_context ,
EGL_EXT_pixel_format_float , EGL_KHR_gl_colorspace , EGL_EXT_colorspace_scrgb_linear ,
and EGL_GL_colorspace_display_p3 extensions.
[SR] Are STRONGLY RECOMMENDED to support GL_EXT_sRGB .

Conversely, if device implementations do not support wide-gamut displays, they:

[C-2-1] SHOULD cover 100% or more of sRGB in CIE 1931 xyY space, although the
screen color gamut is undefined.

Page 74 of 122

http://developer.android.com/guide/topics/renderscript/
http://developer.android.com/guide/topics/graphics/hardware-accel.html
http://developer.android.com/guide/topics/graphics/hardware-accel.html
https://developer.android.com/reference/android/view/Display.html#isWideColorGamut%28%29

7.1.5. Legacy Application Compatibility Mode

Android specifies a “compatibility mode” in which the framework operates in a 'normal' screen size
equivalent (320dp width) mode for the benefit of legacy applications not developed for old versions of
Android that pre-date screen-size independence.

7.1.6. Screen Technology

The Android platform includes APIs that allow applications to render rich graphics to the display.
Devices MUST support all of these APIs as defined by the Android SDK unless specifically allowed in
this document.
Device implementations:

[C-0-1] MUST support displays capable of rendering 16-bit color graphics.
SHOULD support displays capable of 24-bit color graphics.
[C-0-2] MUST support displays capable of rendering animations.
[C-0-3] MUST use the display technology that have a pixel aspect ratio (PAR) between 0.9
and 1.15. That is, the pixel aspect ratio MUST be near square (1.0) with a 10 ~ 15%
tolerance.

7.1.7. Secondary Displays

Android includes support for secondary display to enable media sharing capabilities and developer
APIs for accessing external displays.
If device implementations support an external display either via a wired, wireless, or an embedded
additional display connection, they:

[C-1-1] MUST implement the DisplayManager system service and API as described in the
Android SDK documentation.

7.2. Input Devices

Device implementations:

[C-0-1] MUST include an input mechanism, such as a touchscreen or non-touch navigation
, to navigate between the UI elements.

7.2.1. Keyboard

If device implementations include support for third-party Input Method Editor (IME) applications, they:

[C-1-1] MUST declare the android.software.input_methods feature flag.
[C-1-2] MUST implement fully Input Management Framework
[C-1-3] MUST have a preloaded software keyboard.

Device implementations: [C-0-1] MUST NOT include a hardware keyboard that does not match one of
the formats specified in android.content.res.Configuration.keyboard (QWERTY or 12-key). SHOULD
include additional soft keyboard implementations. * MAY include a hardware keyboard.

7.2.2. Non-touch Navigation

Android includes support for d-pad, trackball, and wheel as mechanisms for non-touch navigation.

Page 75 of 122

https://developer.android.com/reference/android/hardware/display/DisplayManager.html
https://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_INPUT_METHODS
https://developer.android.com/reference/android/view/inputmethod/InputMethodManager.html
http://developer.android.com/reference/android/content/res/Configuration.html

Device implementations:

[C-0-1] MUST report the correct value for android.content.res.Configuration.navigation .

If device implementations lack non-touch navigations, they:

[C-1-1] MUST provide a reasonable alternative user interface mechanism for the selection
and editing of text, compatible with Input Management Engines. The upstream Android
open source implementation includes a selection mechanism suitable for use with devices
that lack non-touch navigation inputs.

7.2.3. Navigation Keys

The Home , Recents , and Back functions typically provided via an interaction with a dedicated
physical button or a distinct portion of the touch screen, are essential to the Android navigation
paradigm and therefore, device implementations:

[C-0-1] MUST provide a user affordance to launch installed applications that have an
activity with the <intent-filter> set with ACTION=MAIN and CATEGORY=LAUNCHER or
CATEGORY=LEANBACK_LAUNCHER for Television device implementations. The Home
function SHOULD be the mechanism for this user affordance.
SHOULD provide buttons for the Recents and Back function.

If the Home, Recents, or Back functions are provided, they:

[C-1-1] MUST be accessible with a single action (e.g. tap, double-click or gesture) when
any of them are accessible.
[C-1-2] MUST provide a clear indication of which single action would trigger each function.
Having a visible icon imprinted on the button, showing a software icon on the navigation
bar portion of the screen, or walking the user through a guided step-by-step demo flow
during the out-of-box setup experience are examples of such an indication.

Device implementations:

[SR] are STRONGLY RECOMMENDED to not provide the input mechanism for the Menu
function as it is deprecated in favor of action bar since Android 4.0.

If device implementations provide the Menu function, they:

[C-2-1] MUST display the action overflow button whenever the action overflow menu
popup is not empty and the action bar is visible.
[C-2-2] MUST NOT modify the position of the action overflow popup displayed by selecting
the overflow button in the action bar, but MAY render the action overflow popup at a
modified position on the screen when it is displayed by selecting the Menu function.

If device implementations do not provide the Menu function, for backwards compatibility, they:

[C-3-1] MUST make the Menu function available to applications when targetSdkVersion is
less than 10, either by a physical button, a software key, or gestures. This Menu function
should be accessible unless hidden together with other navigation functions.

If device implementations provide the Assist function , they:

[C-4-1] MUST make the Assist function accessible with a single action (e.g. tap, double-

Page 76 of 122

https://developer.android.com/reference/android/content/res/Configuration.html#navigation
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_HOME
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_APP_SWITCH
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BACK
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BACK
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_ASSIST

click or gesture) when other navigation keys are accessible.
[SR] STRONGLY RECOMMENDED to use long press on HOME function as this
designated interaction.

If device implementations use a distinct portion of the screen to display the navigation keys, they:

[C-5-1] Navigation keys MUST use a distinct portion of the screen, not available to
applications, and MUST NOT obscure or otherwise interfere with the portion of the screen
available to applications.
[C-5-2] MUST make available a portion of the display to applications that meets the
requirements defined in section 7.1.1 .
[C-5-3] MUST honor the flags set by the app through the View.setSystemUiVisibility() API
method, so that this distinct portion of the screen (a.k.a. the navigation bar) is properly
hidden away as documented in the SDK.

7.2.4. Touchscreen Input

Android includes support for a variety of pointer input systems, such as touchscreens, touch pads, and
fake touch input devices. Touchscreen-based device implementations are associated with a display
such that the user has the impression of directly manipulating items on screen. Since the user is
directly touching the screen, the system does not require any additional affordances to indicate the
objects being manipulated.
Device implementations:

SHOULD have a pointer input system of some kind (either mouse-like or touch).
SHOULD support fully independently tracked pointers.

If device implementations include a touchscreen (single-touch or better), they:

[C-1-1] MUST report TOUCHSCREEN_FINGER for the Configuration.touchscreen API field.
[C-1-2] MUST report the android.hardware.touchscreen and android.hardware.faketouch feature
flags

If device implementations include a touchscreen that can track more than a single touch, they:

[C-2-1] MUST report the appropriate feature flags android.hardware.touchscreen.multitouch ,
android.hardware.touchscreen.multitouch.distinct ,
android.hardware.touchscreen.multitouch.jazzhand corresponding to the type of the specific
touchscreen on the device.

If device implementations do not include a touchscreen (and rely on a pointer device only) and meet
the fake touch requirements in section 7.2.5 , they:

[C-3-1] MUST NOT report any feature flag starting with android.hardware.touchscreen and
MUST report only android.hardware.faketouch .

7.2.5. Fake Touch Input

Fake touch interface provides a user input system that approximates a subset of touchscreen
capabilities. For example, a mouse or remote control that drives an on-screen cursor approximates
touch, but requires the user to first point or focus then click. Numerous input devices like the mouse,
trackpad, gyro-based air mouse, gyro-pointer, joystick, and multi-touch trackpad can support fake
touch interactions. Android includes the feature constant android.hardware.faketouch, which

Page 77 of 122

https://developer.android.com/reference/android/view/View.html#setSystemUiVisibility%28int%29
http://source.android.com/devices/tech/input/touch-devices.html
https://developer.android.com/reference/android/content/res/Configuration.html#touchscreen

corresponds to a high-fidelity non-touch (pointer-based) input device such as a mouse or trackpad that
can adequately emulate touch-based input (including basic gesture support), and indicates that the
device supports an emulated subset of touchscreen functionality.
If device implementations do not include a touchscreen but include another pointer input system which
they want to make available, they:

SHOULD declare support for the android.hardware.faketouch feature flag.

If device implementations declare support for android.hardware.faketouch , they:

[C-1-1] MUST report the absolute X and Y screen positions of the pointer location and
display a visual pointer on the screen.
[C-1-2] MUST report touch event with the action code that specifies the state change that
occurs on the pointer going down or up on the screen .
[C-1-3] MUST support pointer down and up on an object on the screen, which allows users
to emulate tap on an object on the screen.
[C-1-4] MUST support pointer down, pointer up, pointer down then pointer up in the same
place on an object on the screen within a time threshold, which allows users to emulate
double tap on an object on the screen.
[C-1-5] MUST support pointer down on an arbitrary point on the screen, pointer move to
any other arbitrary point on the screen, followed by a pointer up, which allows users to
emulate a touch drag.
[C-1-6] MUST support pointer down then allow users to quickly move the object to a
different position on the screen and then pointer up on the screen, which allows users to
fling an object on the screen.
[C-1-7] MUST report TOUCHSCREEN_NOTOUCH for the Configuration.touchscreen API
field.

If device implementations declare support for android.hardware.faketouch.multitouch.distinct , they:

[C-2-1] MUST declare support for android.hardware.faketouch .
[C-2-2] MUST support distinct tracking of two or more independent pointer inputs.

If device implementations declare support for android.hardware.faketouch.multitouch.jazzhand , they:

[C-3-1] MUST declare support for android.hardware.faketouch .
[C-3-2] MUST support distinct tracking of 5 (tracking a hand of fingers) or more pointer
inputs fully independently.

7.2.6. Game Controller Support

7.2.6.1. Button Mappings

If device implementations declare the android.hardware.gamepad feature flag, they:

[C-1-1] MUST have embed a controller or ship with a separate controller in the box, that
would provide means to input all the events listed in the below tables.
[C-1-2] MUST be capable to map HID events to it's associated Android view.InputEvent
constants as listed in the below tables. The upstream Android implementation includes
implementation for game controllers that satisfies this requirement.

Button HID Usage 2 Android Button

Page 78 of 122

http://developer.android.com/reference/android/view/MotionEvent.html
http://developer.android.com/reference/android/view/MotionEvent.html
http://developer.android.com/reference/android/view/MotionEvent.html
https://developer.android.com/reference/android/content/res/Configuration.html#touchscreen

A 1 0x09 0x0001 KEYCODE_BUTTON_A (96)

B 1 0x09 0x0002 KEYCODE_BUTTON_B (97)

X 1 0x09 0x0004 KEYCODE_BUTTON_X (99)

Y 1 0x09 0x0005 KEYCODE_BUTTON_Y (100)

D-pad up 1

D-pad down 1 0x01 0x0039 3 AXIS_HAT_Y 4

D-pad left 1
D-pad right 1 0x01 0x0039 3 AXIS_HAT_X 4

Left shoulder button 1 0x09 0x0007 KEYCODE_BUTTON_L1 (102)

Right shoulder button 1 0x09 0x0008 KEYCODE_BUTTON_R1 (103)

Left stick click 1 0x09 0x000E KEYCODE_BUTTON_THUMBL (106)

Right stick click 1 0x09 0x000F KEYCODE_BUTTON_THUMBR (107)

Home 1 0x0c 0x0223 KEYCODE_HOME (3)

Back 1 0x0c 0x0224 KEYCODE_BACK (4)

1 KeyEvent

2 The above HID usages must be declared within a Game pad CA (0x01 0x0005).

3 This usage must have a Logical Minimum of 0, a Logical Maximum of 7, a Physical Minimum of 0, a Physical
Maximum of 315, Units in Degrees, and a Report Size of 4. The logical value is defined to be the clockwise
rotation away from the vertical axis; for example, a logical value of 0 represents no rotation and the up button
being pressed, while a logical value of 1 represents a rotation of 45 degrees and both the up and left keys being
pressed.

4 MotionEvent

Analog Controls 1 HID Usage Android Button

Left Trigger 0x02 0x00C5 AXIS_LTRIGGER

Right Trigger 0x02 0x00C4 AXIS_RTRIGGER

Left Joystick 0x01 0x0030
0x01 0x0031

AXIS_X
AXIS_Y

Right Joystick 0x01 0x0032
0x01 0x0035

AXIS_Z
AXIS_RZ

1 MotionEvent

7.2.7. Remote Control

See Section 2.3.1 for device-specific requirements.

7.3. Sensors

If device implementations include a particular sensor type that has a corresponding API for third-party
developers, the device implementation MUST implement that API as described in the Android SDK
documentation and the Android Open Source documentation on sensors .
Device implementations:

Page 79 of 122

http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BUTTON_A
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BUTTON_B
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BUTTON_X
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BUTTON_Y
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_DPAD_UP
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_DPAD_DOWN
http://developer.android.com/reference/android/view/MotionEvent.html#AXIS_HAT_Y
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_DPAD_LEFT
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_DPAD_RIGHT
http://developer.android.com/reference/android/view/MotionEvent.html#AXIS_HAT_X
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BUTTON_L1
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BUTTON_R1
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BUTTON_THUMBL
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BUTTON_THUMBR
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_HOME
http://developer.android.com/reference/android/view/KeyEvent.html#KEYCODE_BACK
http://developer.android.com/reference/android/view/KeyEvent.html
http://developer.android.com/reference/android/view/MotionEvent.html
http://developer.android.com/reference/android/view/MotionEvent.html#AXIS_LTRIGGER
http://developer.android.com/reference/android/view/MotionEvent.html#AXIS_THROTTLE
http://developer.android.com/reference/android/view/MotionEvent.html#AXIS_Y
http://developer.android.com/reference/android/view/MotionEvent.html#AXIS_Z
http://developer.android.com/reference/android/view/MotionEvent.html
http://source.android.com/devices/sensors/

[C-0-1] MUST accurately report the presence or absence of sensors per the
android.content.pm.PackageManager class.
[C-0-2] MUST return an accurate list of supported sensors via the
SensorManager.getSensorList() and similar methods.
[C-0-3] MUST behave reasonably for all other sensor APIs (for example, by returning true
or false as appropriate when applications attempt to register listeners, not calling sensor
listeners when the corresponding sensors are not present; etc.).

If device implementations include a particular sensor type that has a corresponding API for third-party
developers, they:

[C-1-1] MUST report all sensor measurements using the relevant International System of
Units (metric) values for each sensor type as defined in the Android SDK documentation.
[C-1-2] MUST report sensor data with a maximum latency of 100 milliseconds
2 * sample_time for the case of a sensor streamed with a minimum required latency of 5
ms + 2 * sample_time when the application processor is active. This delay does not include
any filtering delays.
[C-1-3] MUST report the first sensor sample within 400 milliseconds + 2 * sample_time of
the sensor being activated. It is acceptable for this sample to have an accuracy of 0.

[SR] SHOULD report the event time in nanoseconds as defined in the Android SDK
documentation, representing the time the event happened and synchronized with the
SystemClock.elapsedRealtimeNano() clock. Existing and new Android devices are
STRONGLY RECOMMENDED to meet these requirements so they will be able to upgrade
to the future platform releases where this might become a REQUIRED component. The
synchronization error SHOULD be below 100 milliseconds.

[C-1-7] For any API indicated by the Android SDK documentation to be a continuous
sensor , device implementations MUST continuously provide periodic data samples that
SHOULD have a jitter below 3%, where jitter is defined as the standard deviation of the
difference of the reported timestamp values between consecutive events.

[C-1-8] MUST ensure that the sensor event stream MUST NOT prevent the device CPU
from entering a suspend state or waking up from a suspend state.
When several sensors are activated, the power consumption SHOULD NOT exceed the
sum of the individual sensor’s reported power consumption.

The list above is not comprehensive; the documented behavior of the Android SDK and the Android
Open Source Documentations on sensors is to be considered authoritative.
Some sensor types are composite, meaning they can be derived from data provided by one or more
other sensors. (Examples include the orientation sensor and the linear acceleration sensor.)
Device implementations:

SHOULD implement these sensor types, when they include the prerequisite physical
sensors as described in sensor types .

If device implementations include a composite sensor, they:

[C-2-1] MUST implement the sensor as described in the Android Open Source
documentation on composite sensors .

7.3.1. Accelerometer

Device implementations SHOULD include a 3-axis accelerometer.

Page 80 of 122

http://developer.android.com/reference/android/content/pm/PackageManager.html
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/hardware/SensorEvent.html#timestamp
https://source.android.com/devices/sensors/report-modes.html#continuous
http://source.android.com/devices/sensors/
https://source.android.com/devices/sensors/sensor-types.html
https://source.android.com/devices/sensors/sensor-types.html#composite_sensor_type_summary

If device implementations include a 3-axis accelerometer, they:

[C-1-1] MUST be able to report events up to a frequency of at least 50 Hz.
[C-1-2] MUST implement and report TYPE_ACCELEROMETER sensor.
[C-1-3] MUST comply with the Android sensor coordinate system as detailed in the
Android APIs.
[C-1-4] MUST be capable of measuring from freefall up to four times the gravity(4g) or
more on any axis.
[C-1-5] MUST have a resolution of at least 12-bits.
[C-1-6] MUST have a standard deviation no greater than 0.05 m/s^, where the standard
deviation should be calculated on a per axis basis on samples collected over a period of at
least 3 seconds at the fastest sampling rate.
[SR] are STRONGLY RECOMMENDED to implement the TYPE_SIGNIFICANT_MOTION
composite sensor.
[SR] are STRONGLY RECOMMENDED to implement the
TYPE_ACCELEROMETER_UNCALIBRATED sensor if online accelerometer calibration is
available.
SHOULD implement the TYPE_SIGNIFICANT_MOTION , TYPE_TILT_DETECTOR ,
TYPE_STEP_DETECTOR , TYPE_STEP_COUNTER composite sensors as described in the
Android SDK document.
SHOULD report events up to at least 200 Hz.
SHOULD have a resolution of at least 16-bits.
SHOULD be calibrated while in use if the characteristics changes over the life cycle and
compensated, and preserve the compensation parameters between device reboots.
SHOULD be temperature compensated.
SHOULD also implement TYPE_ACCELEROMETER_UNCALIBRATED sensor.

If device implementations include a 3-axis accelerometer and any of the
TYPE_SIGNIFICANT_MOTION , TYPE_TILT_DETECTOR , TYPE_STEP_DETECTOR ,
TYPE_STEP_COUNTER composite sensors are implemented:

[C-2-1] The sum of their power consumption MUST always be less than 4 mW.
SHOULD each be below 2 mW and 0.5 mW for when the device is in a dynamic or static
condition.

If device implementations include a 3-axis accelerometer and a gyroscope sensor, they:

[C-3-1] MUST implement the TYPE_GRAVITY and TYPE_LINEAR_ACCELERATION
composite sensors.
SHOULD implement the TYPE_GAME_ROTATION_VECTOR composite sensor.
[SR] Existing and new Android devices are STRONGLY RECOMMENDED to implement
the TYPE_GAME_ROTATION_VECTOR sensor.

If device implementations include a 3-axis accelerometer, a gyroscope sensor and a magnetometer
sensor, they:

[C-4-1] MUST implement a TYPE_ROTATION_VECTOR composite sensor.

7.3.2. Magnetometer

Device implementations SHOULD include a 3-axis magnetometer (compass).

Page 81 of 122

http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_ACCELEROMETER
http://developer.android.com/reference/android/hardware/SensorEvent.html
https://developer.android.com/reference/android/hardware/Sensor.html#STRING_TYPE_ACCELEROMETER_UNCALIBRATED

If device impelementations include a 3-axis magnetometer, they:

[C-1-1] MUST implement the TYPE_MAGNETIC_FIELD sensor.
[C-1-2] MUST be able to report events up to a frequency of at least 10 Hz and SHOULD
report events up to at least 50 Hz.
[C-1-3] MUST comply with the Android sensor coordinate system as detailed in the
Android APIs.
[C-1-4] MUST be capable of measuring between -900 µT and +900 µT on each axis before
saturating.
[C-1-5] MUST have a hard iron offset value less than 700 µT and SHOULD have a value
below 200 µT, by placing the magnetometer far from dynamic (current-induced) and static
(magnet-induced) magnetic fields.
[C-1-6] MUST have a resolution equal or denser than 0.6 µT.
[C-1-7] MUST support online calibration and compensation of the hard iron bias, and
preserve the compensation parameters between device reboots.
[C-1-8] MUST have the soft iron compensation applied—the calibration can be done either
while in use or during the production of the device.
[C-1-9] MUST have a standard deviation, calculated on a per axis basis on samples
collected over a period of at least 3 seconds at the fastest sampling rate, no greater than
1.5 µT; SHOULD have a standard deviation no greater than 0.5 µT.
SHOULD implement TYPE_MAGNETIC_FIELD_UNCALIBRATED sensor.
[SR] Existing and new Android devices are STRONGLY RECOMMENDED to implement
the TYPE_MAGNETIC_FIELD_UNCALIBRATED sensor.

If device impelementations include a 3-axis magnetometer, an accelerometer sensor and a gyroscope
sensor, they:

[C-2-1] MUST implement a TYPE_ROTATION_VECTOR composite sensor.

If device impelementations include a 3-axis magnetometer, an accelerometer, they:

MAY implement the TYPE_GEOMAGNETIC_ROTATION_VECTOR sensor.

If device impelementations include a 3-axis magnetometer, an accelerometer and
TYPE_GEOMAGNETIC_ROTATION_VECTOR sensor, they:

[C-3-1] MUST consume less than 10 mW.
SHOULD consume less than 3 mW when the sensor is registered for batch mode at 10 Hz.

7.3.3. GPS

Device implementations:

SHOULD include a GPS/GNSS receiver.

If device implementations include a GPS/GNSS receiver and report the capability to applications
through the android.hardware.location.gps feature flag, they:

[C-1-1] MUST support location outputs at a rate of at least 1 Hz when requested via
LocationManager#requestLocationUpdate .
[C-1-2] MUST be able to determine the location in open-sky conditions (strong signals,
negligible multipath, HDOP < 2) within 10 seconds (fast time to first fix), when connected to
a 0.5 Mbps or faster data speed internet connection. This requirement is typically met by

Page 82 of 122

http://developer.android.com/reference/android/hardware/SensorEvent.html

the use of some form of Assisted or Predicted GPS/GNSS technique to minimize
GPS/GNSS lock-on time (Assistance data includes Reference Time, Reference Location
and Satellite Ephemeris/Clock).

[SR] After making such a location calculation, it is STRONGLY
RECOMMENDED for the device to be able to determine its location, in open
sky, within 10 seconds, when location requests are restarted, up to an hour
after the initial location calculation, even when the subsequent request is made
without a data connection, and/or after a power cycle.

In open sky conditions after determining the location, while stationary or moving with less
than 1 meter per second squared of acceleration:

[C-1-3] MUST be able to determine location within 20 meters, and speed within
0.5 meters per second, at least 95% of the time.
[C-1-4] MUST simultaneously track and report via GnssStatus.Callback at least 8
satellites from one constellation.
SHOULD be able to simultaneously track at least 24 satellites, from multiple
constellations (e.g. GPS + at least one of Glonass, Beidou, Galileo).
[C-1-5] MUST report the GNSS technology generation through the test API
‘getGnssYearOfHardware’.
[SR] Continue to deliver normal GPS/GNSS location outputs during an
emergency phone call.
[SR] Report GNSS measurements from all constellations tracked (as reported
in GnssStatus messages), with the exception of SBAS.
[SR] Report AGC, and Frequency of GNSS measurement.
[SR] Report all accuracy estimates (including Bearing, Speed, and Vertical) as
part of each GPS Location.
[SR] are STRONGLY RECOMMENDED to meet as many as possible from the
additional mandatory requirements for devices reporting the year "2016" or
"2017" through the Test API LocationManager.getGnssYearOfHardware() .

If device implementations include a GPS/GNSS receiver and report the capability to applications
through the android.hardware.location.gps feature flag and the LocationManager.getGnssYearOfHardware()
Test API reports the year "2016" or newer, they:

[C-2-1] MUST report GPS measurements, as soon as they are found, even if a location
calculated from GPS/GNSS is not yet reported.
[C-2-2] MUST report GPS pseudoranges and pseudorange rates, that, in open-sky
conditions after determining the location, while stationary or moving with less than 0.2
meter per second squared of acceleration, are sufficient to calculate position within 20
meters, and speed within 0.2 meters per second, at least 95% of the time.

If device implementations include a GPS/GNSS receiver and report the capability to applications
through the android.hardware.location.gps feature flag and the LocationManager.getGnssYearOfHardware()
Test API reports the year "2017" or newer, they:

[C-3-1] MUST continue to deliver normal GPS/GNSS location outputs during an
emergency phone call.
[C-3-2] MUST report GNSS measurements from all constellations tracked (as reported in
GnssStatus messages), with the exception of SBAS.
[C-3-3] MUST report AGC, and Frequency of GNSS measurement.
[C-3-4] MUST report all accuracy estimates (including Bearing, Speed, and Vertical) as
part of each GPS Location.

Page 83 of 122

https://developer.android.com/reference/android/location/GnssStatus.Callback.html#GnssStatus.Callback()'

7.3.4. Gyroscope

Device implementations:

SHOULD include a gyroscope (angular change sensor).
SHOULD NOT include a gyroscope sensor unless a 3-axis accelerometer is also included.

If device implementations include a gyroscope, they:

[C-1-1] MUST be able to report events up to a frequency of at least 50 Hz.
[C-1-2] MUST implement the TYPE_GYROSCOPE sensor and SHOULD also implement
TYPE_GYROSCOPE_UNCALIBRATED sensor.
[C-1-3] MUST be capable of measuring orientation changes up to 1,000 degrees per
second.
[C-1-4] MUST have a resolution of 12-bits or more and SHOULD have a resolution of 16-
bits or more.
[C-1-5] MUST be temperature compensated.
[C-1-6] MUST be calibrated and compensated while in use, and preserve the
compensation parameters between device reboots.
[C-1-7] MUST have a variance no greater than 1e-7 rad^2 / s^2 per Hz (variance per Hz, or
rad^2 / s). The variance is allowed to vary with the sampling rate, but MUST be
constrained by this value. In other words, if you measure the variance of the gyro at 1 Hz
sampling rate it SHOULD be no greater than 1e-7 rad^2/s^2.
[SR] Existing and new Android devices are STRONGLY RECOMMENDED to implement
the SENSOR_TYPE_GYROSCOPE_UNCALIBRATED sensor.
[SR] Calibration error is STRONGLY RECOMMENDED to be less than 0.01 rad/s when
device is stationary at room temperature.
SHOULD report events up to at least 200 Hz.

If device implementations include a gyroscope, an accelerometer sensor and a magnetometer sensor,
they:

[C-2-1] MUST implement a TYPE_ROTATION_VECTOR composite sensor.

If device implementations include a gyroscope and a accelerometer sensor, they:

[C-3-1] MUST implement the TYPE_GRAVITY and TYPE_LINEAR_ACCELERATION
composite sensors.
[SR] Existing and new Android devices are STRONGLY RECOMMENDED to implement
the TYPE_GAME_ROTATION_VECTOR sensor.
SHOULD implement the TYPE_GAME_ROTATION_VECTOR composite sensor.

7.3.5. Barometer

Device implementations SHOULD include a barometer (ambient air pressure sensor).

If device implementations include a barometer, they:

[C-1-1] MUST implement and report TYPE_PRESSURE sensor.
[C-1-2] MUST be able to deliver events at 5 Hz or greater.
[C-1-3] MUST be temperature compensated.
[SR] STRONGLY RECOMMENDED to be able to report pressure measurements in the

Page 84 of 122

range 300hPa to 1100hPa.
SHOULD have an absolute accuracy of 1hPa.
SHOULD have a relative accuracy of 0.12hPa over 20hPa range (equivalent to ~1m
accuracy over ~200m change at sea level).

7.3.6. Thermometer

Device implementations: MAY include an ambient thermometer (temperature sensor). MAY but
SHOULD NOT include a CPU temperature sensor.
If device implementations include an ambient thermometer (temperature sensor), they:

[C-1-1] MUST be defined as SENSOR_TYPE_AMBIENT_TEMPERATURE and MUST
measure the ambient (room/vehicle cabin) temperature from where the user is interacting
with the device in degrees Celsius.
[C-1-2] MUST be defined as SENSOR_TYPE_TEMPERATURE .
[C-1-3] MUST measure the temperature of the device CPU.
[C-1-4] MUST NOT measure any other temperature.

Note the SENSOR_TYPE_TEMPERATURE sensor type was deprecated in Android 4.0.

7.3.7. Photometer

Device implementations MAY include a photometer (ambient light sensor).

7.3.8. Proximity Sensor

Device implementations MAY include a proximity sensor.

If device implementations include a proximity sensor, they:

[C-1-1] MUST measure the proximity of an object in the same direction as the screen. That
is, the proximity sensor MUST be oriented to detect objects close to the screen, as the
primary intent of this sensor type is to detect a phone in use by the user. If device
implementations include a proximity sensor with any other orientation, it MUST NOT be
accessible through this API.
[C-1-2] MUST have 1-bit of accuracy or more.

7.3.9. High Fidelity Sensors

If device implementations include a set of higher quality sensors as defined in this section, and make
available them to third-party apps, they:

[C-1-1] MUST identify the capability through the android.hardware.sensor.hifi_sensors feature
flag.

If device implementations declare android.hardware.sensor.hifi_sensors , they:

[C-2-1] MUST have a TYPE_ACCELEROMETER sensor which:
MUST have a measurement range between at least -8g and +8g.
MUST have a measurement resolution of at least 1024 LSB/G.
MUST have a minimum measurement frequency of 12.5 Hz or lower.
MUST have a maximum measurement frequency of 400 Hz or higher.

Page 85 of 122

MUST have a measurement noise not above 400 uG/√Hz.
MUST implement a non-wake-up form of this sensor with a buffering capability
of at least 3000 sensor events.
MUST have a batching power consumption not worse than 3 mW.
SHOULD have a stationary noise bias stability of \<15 μg √Hz from 24hr static
dataset.
SHOULD have a bias change vs. temperature of ≤ +/- 1mg / °C.
SHOULD have a best-fit line non-linearity of ≤ 0.5%, and sensitivity change vs.
temperature of ≤ 0.03%/C°.
SHOULD have white noise spectrum to ensure adequate qualification of
sensor’s noise integrity.

[C-2-2] MUST have a TYPE_ACCELEROMETER_UNCALIBRATED with the same quality
requirements as TYPE_ACCELEROMETER .

[C-2-3] MUST have a TYPE_GYROSCOPE sensor which:
MUST have a measurement range between at least -1000 and +1000 dps.
MUST have a measurement resolution of at least 16 LSB/dps.
MUST have a minimum measurement frequency of 12.5 Hz or lower.
MUST have a maximum measurement frequency of 400 Hz or higher.
MUST have a measurement noise not above 0.014°/s/√Hz.
SHOULD have a stationary bias stability of < 0.0002 °/s √Hz from 24-hour
static dataset.
SHOULD have a bias change vs. temperature of ≤ +/- 0.05 °/ s / °C.
SHOULD have a sensitivity change vs. temperature of ≤ 0.02% / °C.
SHOULD have a best-fit line non-linearity of ≤ 0.2%.
SHOULD have a noise density of ≤ 0.007 °/s/√Hz.
SHOULD have white noise spectrum to ensure adequate qualification of
sensor’s noise integrity.
SHOULD have calibration error less than 0.002 rad/s in temperature range 10 ~
40 ℃ when device is stationary.

[C-2-4] MUST have a TYPE_GYROSCOPE_UNCALIBRATED with the same quality
requirements as TYPE_GYROSCOPE .
[C-2-5] MUST have a TYPE_GEOMAGNETIC_FIELD sensor which:

MUST have a measurement range between at least -900 and +900 uT.
MUST have a measurement resolution of at least 5 LSB/uT.
MUST have a minimum measurement frequency of 5 Hz or lower.
MUST have a maximum measurement frequency of 50 Hz or higher.
MUST have a measurement noise not above 0.5 uT.

[C-2-6] MUST have a TYPE_MAGNETIC_FIELD_UNCALIBRATED with the same quality
requirements as TYPE_GEOMAGNETIC_FIELD and in addition:

MUST implement a non-wake-up form of this sensor with a buffering capability
of at least 600 sensor events.
SHOULD have white noise spectrum to ensure adequate qualification of
sensor’s noise integrity.

[C-2-7] MUST have a TYPE_PRESSURE sensor which:
MUST have a measurement range between at least 300 and 1100 hPa.
MUST have a measurement resolution of at least 80 LSB/hPa.
MUST have a minimum measurement frequency of 1 Hz or lower.
MUST have a maximum measurement frequency of 10 Hz or higher.
MUST have a measurement noise not above 2 Pa/√Hz.

Page 86 of 122

MUST implement a non-wake-up form of this sensor with a buffering capability
of at least 300 sensor events.
MUST have a batching power consumption not worse than 2 mW.

[C-2-8] MUST have a TYPE_GAME_ROTATION_VECTOR sensor which:
MUST implement a non-wake-up form of this sensor with a buffering capability
of at least 300 sensor events.
MUST have a batching power consumption not worse than 4 mW.

[C-2-9] MUST have a TYPE_SIGNIFICANT_MOTION sensor which:
MUST have a power consumption not worse than 0.5 mW when device is static
and 1.5 mW when device is moving.

[C-2-10] MUST have a TYPE_STEP_DETECTOR sensor which:
MUST implement a non-wake-up form of this sensor with a buffering capability
of at least 100 sensor events.
MUST have a power consumption not worse than 0.5 mW when device is static
and 1.5 mW when device is moving.
MUST have a batching power consumption not worse than 4 mW.

[C-2-11] MUST have a TYPE_STEP_COUNTER sensor which:
MUST have a power consumption not worse than 0.5 mW when device is static
and 1.5 mW when device is moving.

[C-2-12] MUST have a TILT_DETECTOR sensor which:
MUST have a power consumption not worse than 0.5 mW when device is static
and 1.5 mW when device is moving.

[C-2-13] The event timestamp of the same physical event reported by the Accelerometer,
Gyroscope sensor and Magnetometer MUST be within 2.5 milliseconds of each other.
[C-2-14] MUST have Gyroscope sensor event timestamps on the same time base as the
camera subsystem and within 1 milliseconds of error.
[C-2-15] MUST deliver samples to applications within 5 milliseconds from the time when
the data is available on any of the above physical sensors to the application.
[C-2-16] MUST not have a power consumption higher than 0.5 mW when device is static
and 2.0 mW when device is moving when any combination of the following sensors are
enabled:

SENSOR_TYPE_SIGNIFICANT_MOTION
SENSOR_TYPE_STEP_DETECTOR
SENSOR_TYPE_STEP_COUNTER
SENSOR_TILT_DETECTORS

[C-2-17] MAY have a TYPE_PROXIMITY sensor, but if present MUST have a minimum
buffer capability of 100 sensor events.

Note that all power consumption requirements in this section do not include the power consumption of
the Application Processor. It is inclusive of the power drawn by the entire sensor chain—the sensor,
any supporting circuitry, any dedicated sensor processing system, etc.
If device implementations include direct sensor support, they:

[C-3-1] MUST correctly declare support of direct channel types and direct report rates level
through the isDirectChannelTypeSupported and getHighestDirectReportRateLevel API.
[C-3-2] MUST support at least one of the two sensor direct channel types for all sensors
that declare support for sensor direct channel
TYPE_HARDWARE_BUFFER
TYPE_MEMORY_FILE
SHOULD support event reporting through sensor direct channel for primary sensor (non-

Page 87 of 122

https://developer.android.com/reference/android/hardware/Sensor.html#isDirectChannelTypeSupported%28int%29
https://developer.android.com/reference/android/hardware/Sensor.html#getHighestDirectReportRateLevel%28%29
https://developer.android.com/reference/android/hardware/SensorDirectChannel.html#TYPE_HARDWARE_BUFFER
https://developer.android.com/reference/android/hardware/SensorDirectChannel.html#TYPE_MEMORY_FILE

wakeup variant) of the following types:
TYPE_ACCELEROMETER
TYPE_ACCELEROMETER_UNCALIBRATED
TYPE_GYROSCOPE
TYPE_GYROSCOPE_UNCALIBRATED
TYPE_MAGNETIC_FIELD
TYPE_MAGNETIC_FIELD_UNCALIBRATED

7.3.10. Fingerprint Sensor

If device implementations include a secure lock screen, they:

SHOULD include a fingerprint sensor.

If device implementations include a fingerprint sensor and make the sensor available to third-party
apps, they:

[C-1-1] MUST declare support for the android.hardware.fingerprint feature.
[C-1-2] MUST fully implement the corresponding API as described in the Android SDK
documentation.
[C-1-3] MUST have a false acceptance rate not higher than 0.002%.
[SR] Are STRONGLY RECOMMENDED to have a spoof and imposter acceptance rate not
higher than 7%.
[C-1-4] MUST disclose that this mode may be less secure than a strong PIN, pattern, or
password and clearly enumerate the risks of enabling it, if the spoof and imposter
acceptance rates are higher than 7%.
[C-1-5] MUST rate limit attempts for at least 30 seconds after five false trials for fingerprint
verification.
[C-1-6] MUST have a hardware-backed keystore implementation, and perform the
fingerprint matching in a Trusted Execution Environment (TEE) or on a chip with a secure
channel to the TEE.
[C-1-7] MUST have all identifiable fingerprint data encrypted and cryptographically
authenticated such that they cannot be acquired, read or altered outside of the Trusted
Execution Environment (TEE) as documented in the implementation guidelines on the
Android Open Source Project site.
[C-1-8] MUST prevent adding a fingerprint without first establishing a chain of trust by
having the user confirm existing or add a new device credential (PIN/pattern/password)
that's secured by TEE; the Android Open Source Project implementation provides the
mechanism in the framework to do so.
[C-1-9] MUST NOT enable 3rd-party applications to distinguish between individual
fingerprints.
[C-1-10] MUST honor the DevicePolicyManager.KEYGUARD_DISABLE_FINGERPRINT
flag.
[C-1-11] MUST, when upgraded from a version earlier than Android 6.0, have the
fingerprint data securely migrated to meet the above requirements or removed.
[SR] Are STRONGLY RECOMMENDED to have a false rejection rate of less than 10%, as
measured on the device.
[SR] Are STRONGLY RECOMMENDED to have a latency below 1 second, measured from
when the fingerprint sensor is touched until the screen is unlocked, for one enrolled finger.
SHOULD use the Android Fingerprint icon provided in the Android Open Source Project.

Page 88 of 122

https://developer.android.com/reference/android/hardware/fingerprint/package-summary.html
https://source.android.com/devices/tech/security/authentication/fingerprint-hal.html

7.3.11. Android Automotive-only sensors

Automotive-specific sensors are defined in the android.car.CarSensorManager API .

7.3.11.1. Current Gear

See Section 2.5.1 for device-specific requirements.

7.3.11.2. Day Night Mode

See Section 2.5.1 for device-specific requirements.

7.3.11.3. Driving Status

See Section 2.5.1 for device-specific requirements.

7.3.11.4. Wheel Speed

See Section 2.5.1 for device-specific requirements.

7.3.12. Pose Sensor

Device implementations:

MAY support pose sensor with 6 degrees of freedom.

If device implementations support pose sensor with 6 degrees of freedom, they:

[C-1-1] MUST implement and report TYPE_POSE_6DOF sensor.
[C-1-2] MUST be more accurate than the rotation vector alone.

7.4. Data Connectivity

7.4.1. Telephony

“Telephony” as used by the Android APIs and this document refers specifically to hardware related to
placing voice calls and sending SMS messages via a GSM or CDMA network. While these voice calls
may or may not be packet-switched, they are for the purposes of Android considered independent of
any data connectivity that may be implemented using the same network. In other words, the Android
“telephony” functionality and APIs refer specifically to voice calls and SMS. For instance, device
implementations that cannot place calls or send/receive SMS messages are not considered a
telephony device, regardless of whether they use a cellular network for data connectivity.

Android MAY be used on devices that do not include telephony hardware. That is, Android
is compatible with devices that are not phones.

If device implementations include GSM or CDMA telephony, they:

[C-1-1] MUST declare the android.hardware.telephony feature flag and other sub-feature
flags according to the technology.
[C-1-2] MUST implement full support for the API for that technology.

Page 89 of 122

https://developer.android.com/reference/android/hardware/Sensor.html#TYPE_POSE_6DOF

If device implementations do not include telephony hardware, they:

[C-2-1] MUST implement the full APIs as no-ops.

7.4.1.1. Number Blocking Compatibility

If device implementations report the android.hardware.telephony feature , they:

[C-1-1] MUST include number blocking support
[C-1-2] MUST fully implement BlockedNumberContract and the corresponding API as
described in the SDK documentation.
[C-1-3] MUST block all calls and messages from a phone number in
'BlockedNumberProvider' without any interaction with apps. The only exception is when
number blocking is temporarily lifted as described in the SDK documentation.
[C-1-4] MUST NOT write to the platform call log provider for a blocked call.
[C-1-5] MUST NOT write to the Telephony provider for a blocked message.
[C-1-6] MUST implement a blocked numbers management UI, which is opened with the
intent returned by TelecomManager.createManageBlockedNumbersIntent() method.
[C-1-7] MUST NOT allow secondary users to view or edit the blocked numbers on the
device as the Android platform assumes the primary user to have full control of the
telephony services, a single instance, on the device. All blocking related UI MUST be
hidden for secondary users and the blocked list MUST still be respected.
SHOULD migrate the blocked numbers into the provider when a device updates to Android
7.0.

7.4.1.2. Telecom API

If device implementations report android.hardware.telephony , they:

[C-SR] Are STRONGLY RECOMMENDED to handle the the audio headset's
KEYCODE_MEDIA_PLAY_PAUSE and KEYCODE_HEADSETHOOK events for the
android.telecom APIs as below:

Call Connection.onDisconnect() when a short press of the key event is detected
during an ongoing call.
Call Connection.onAnswer() when a short press of the key event is detected
during an incoming call.
Call Connection.onReject() when a long press of the key event is detected during
an incoming call.
Toggle the mute status of the CallAudioState

7.4.2. IEEE 802.11 (Wi-Fi)

Device implementations:

SHOULD include support for one or more forms of 802.11.

If device implementations include support for 802.11 and expose the functionality to a third-party
application, they

[C-1-1] MUST implement the corresponding Android API.
[C-1-2] MUST report the hardware feature flag android.hardware.wifi .
[C-1-3] MUST implement the multicast API as described in the SDK documentation.

Page 90 of 122

http://developer.android.com/reference/android/provider/BlockedNumberContract.html
http://developer.android.com/reference/android/provider/CallLog.html
http://developer.android.com/reference/android/provider/Telephony.html
https://developer.android.com/reference/android/telecom/package-summary.html
https://developer.android.com/reference/android/telecom/Connection.html#onDisconnect%28%29
https://developer.android.com/reference/android/telecom/Connection.html#onAnswer%28%29
https://developer.android.com/reference/android/telecom/Connection.html#onReject%28%29
https://developer.android.com/reference/android/telecom/CallAudioState.html
http://developer.android.com/reference/android/net/wifi/WifiManager.MulticastLock.html

[C-1-4] MUST support multicast DNS (mDNS) and MUST NOT filter mDNS packets
(224.0.0.251) at any time of operation including:

Even when the screen is not in an active state.
For Android Television device implementations, even when in standby power
states.

SHOULD randomize the source MAC address and sequence number of probe request
frames, once at the beginning of each scan, while STA is disconnected.

Each group of probe request frames comprising one scan should use one
consistent MAC address (SHOULD NOT randomize MAC address halfway
through a scan).
Probe request sequence number should iterate as normal (sequentially)
between the probe requests in a scan
Probe request sequence number should randomize between the last probe
request of a scan and the first probe request of the next scan

SHOULD only allow the following information elements in probe request frames, while STA
is disconnected:

SSID Parameter Set (0)
DS Parameter Set (3)

7.4.2.1. Wi-Fi Direct

Device implementations:

SHOULD include support for Wi-Fi Direct (Wi-Fi peer-to-peer).

If device implementations include support for Wi-Fi Direct, they:

[C-1-1] MUST implement the corresponding Android API as described in the SDK
documentation.
[C-1-2] MUST report the hardware feature android.hardware.wifi.direct .
[C-1-3] MUST support regular Wi-Fi operation.
SHOULD support Wi-Fi and Wi-Fi Direct operations concurrently.

7.4.2.2. Wi-Fi Tunneled Direct Link Setup

Device implementations:

SHOULD include support for Wi-Fi Tunneled Direct Link Setup (TDLS) as described in the
Android SDK Documentation.

If device implementations include support for TDLS and TDLS is enabled by the WiFiManager API,
they:

[C-1-1] MUST declare support for TDLS through [WifiManager.isTdlsSupported]
(https://developer.android.com/reference/android/net/wifi/WifiManager.html#isTdlsSupported%28%29).
SHOULD use TDLS only when it is possible AND beneficial.
SHOULD have some heuristic and NOT use TDLS when its performance might be worse
than going through the Wi-Fi access point.

7.4.2.3. Wi-Fi Aware

Page 91 of 122

http://developer.android.com/reference/android/net/wifi/p2p/WifiP2pManager.html
http://developer.android.com/reference/android/net/wifi/WifiManager.html

Device implementations:

SHOULD include support for Wi-Fi Aware .

If device implementations include support for Wi-Fi Aware and expose the functionality to third-party
apps, then they:

[C-1-1] MUST implement the WifiAwareManager APIs as described in the SDK
documentation .
[C-1-2] MUST declare the android.hardware.wifi.aware feature flag.
[C-1-3] MUST support Wi-Fi and Wi-Fi Aware operations concurrently.
[C-1-4] MUST randomize the Wi-Fi Aware management interface address at intervals no
longer then 30 minutes and whenever Wi-Fi Aware is enabled.

7.4.2.4. Wi-Fi Passpoint

Device implementations:

SHOULD include support for Wi-Fi Passpoint .

If device implementations include support for Wi-Fi Passpoint, they:

[C-1-1] MUST implement the Passpoint related WifiManager APIs as described in the SDK
documentation .
[C-1-2] MUST support IEEE 802.11u standard, specifically related to Network Discovery
and Selection, such as Generic Advertisement Service (GAS) and Access Network Query
Protocol (ANQP).

Conversely if device implementations do not include support for Wi-Fi Passpoint:

[C-2-1] The implementation of the Passpoint related WifiManager APIs MUST throw an
UnsupportedOperationException .

7.4.3. Bluetooth

If device implementations support Bluetooth Audio profile, they:

SHOULD support Advanced Audio Codecs and Bluetooth Audio Codecs (e.g. LDAC).

If device implementations declare android.hardware.vr.high_performance feature, they:

[C-1-1] MUST support Bluetooth 4.2 and Bluetooth LE Data Length Extension.

Android includes support for Bluetooth and Bluetooth Low Energy .
If device implementations include support for Bluetooth and Bluetooth Low Energy, they:

[C-2-1] MUST declare the relevant platform features (android.hardware.bluetooth and
android.hardware.bluetooth_le respectively) and implement the platform APIs.
SHOULD implement relevant Bluetooth profiles such as A2DP, AVCP, OBEX, etc. as
appropriate for the device.

If device implementations include support for Bluetooth Low Energy, they:

Page 92 of 122

http://www.wi-fi.org/discover-wi-fi/wi-fi-aware
http://developer.android.com/reference/android/net/wifi/aware/WifiAwareManager.html
http://www.wi-fi.org/discover-wi-fi/wi-fi-certified-passpoint
http://developer.android.com/reference/android/net/wifi/WifiManager.html
http://developer.android.com/reference/android/bluetooth/package-summary.html

[C-3-1] MUST declare the hardware feature android.hardware.bluetooth_le .
[C-3-2] MUST enable the GATT (generic attribute profile) based Bluetooth APIs as
described in the SDK documentation and android.bluetooth .
[C-3-3] MUST report the correct value for BluetoothAdapter.isOffloadedFilteringSupported() to
indicate whether the filtering logic for the ScanFilter API classes is implemented.
[C-3-4] MUST report the correct value for
BluetoothAdapter.isMultipleAdvertisementSupported() to indicate whether Low Energy
Advertising is supported.
SHOULD support offloading of the filtering logic to the bluetooth chipset when
implementing the ScanFilter API .
SHOULD support offloading of the batched scanning to the bluetooth chipset.

SHOULD support multi advertisement with at least 4 slots.

[SR] STRONGLY RECOMMENDED to implement a Resolvable Private Address (RPA)
timeout no longer than 15 minutes and rotate the address at timeout to protect user
privacy.

7.4.4. Near-Field Communications

Device implementations:

SHOULD include a transceiver and related hardware for Near-Field Communications
(NFC).
[C-0-1] MUST implement android.nfc.NdefMessage and android.nfc.NdefRecord APIs even if
they do not include support for NFC or declare the android.hardware.nfc feature as the
classes represent a protocol-independent data representation format.

If device implementations include NFC hardware and plan to make it available to third-party apps,
they:

[C-1-1] MUST report the android.hardware.nfc feature from the
android.content.pm.PackageManager.hasSystemFeature() method .
MUST be capable of reading and writing NDEF messages via the following NFC standards
as below:
[C-1-2] MUST be capable of acting as an NFC Forum reader/writer (as defined by the NFC
Forum technical specification NFCForum-TS-DigitalProtocol-1.0) via the following NFC
standards:
NfcA (ISO14443-3A)
NfcB (ISO14443-3B)
NfcF (JIS X 6319-4)
IsoDep (ISO 14443-4)
NFC Forum Tag Types 1, 2, 3, 4, 5 (defined by the NFC Forum)

[SR] STRONGLY RECOMMENDED to be capable of reading and writing NDEF messages
as well as raw data via the following NFC standards. Note that while the NFC standards
are stated as STRONGLY RECOMMENDED, the Compatibility Definition for a future
version is planned to change these to MUST. These standards are optional in this version
but will be required in future versions. Existing and new devices that run this version of
Android are very strongly encouraged to meet these requirements now so they will be able
to upgrade to the future platform releases.

[C-1-3] MUST be capable of transmitting and receiving data via the following peer-to-peer
standards and protocols:
ISO 18092

Page 93 of 122

http://developer.android.com/reference/android/bluetooth/package-summary.html
https://developer.android.com/reference/android/bluetooth/le/ScanFilter.html
https://developer.android.com/reference/android/bluetooth/le/ScanFilter.html
http://developer.android.com/reference/android/content/pm/PackageManager.html

LLCP 1.2 (defined by the NFC Forum)
SDP 1.0 (defined by the NFC Forum)
NDEF Push Protocol
SNEP 1.0 (defined by the NFC Forum)
[C-1-4] MUST include support for Android Beam and SHOULD enable Android Beam by
default.
[C-1-5] MUST be able to send and receive using Android Beam, when Android Beam is
enabled or another proprietary NFC P2p mode is turned on.
[C-1-6] MUST implement the SNEP default server. Valid NDEF messages received by the
default SNEP server MUST be dispatched to applications using the
android.nfc.ACTION_NDEF_DISCOVERED intent. Disabling Android Beam in settings
MUST NOT disable dispatch of incoming NDEF message.
[C-1-7] MUST honor the android.settings.NFCSHARING_SETTINGS intent to show NFC
sharing settings .
[C-1-8] MUST implement the NPP server. Messages received by the NPP server MUST be
processed the same way as the SNEP default server.
[C-1-9] MUST implement a SNEP client and attempt to send outbound P2P NDEF to the
default SNEP server when Android Beam is enabled. If no default SNEP server is found
then the client MUST attempt to send to an NPP server.
[C-1-10] MUST allow foreground activities to set the outbound P2P NDEF message using
android.nfc.NfcAdapter.setNdefPushMessage , and
android.nfc.NfcAdapter.setNdefPushMessageCallback , and
android.nfc.NfcAdapter.enableForegroundNdefPush .
SHOULD use a gesture or on-screen confirmation, such as 'Touch to Beam', before
sending outbound P2P NDEF messages.
[C-1-11] MUST support NFC Connection handover to Bluetooth when the device supports
Bluetooth Object Push Profile.
[C-1-12] MUST support connection handover to Bluetooth when using
android.nfc.NfcAdapter.setBeamPushUris , by implementing the “ Connection Handover
version 1.2 ” and “ Bluetooth Secure Simple Pairing Using NFC version 1.0 ” specs from
the NFC Forum. Such an implementation MUST implement the handover LLCP service
with service name “urn:nfc:sn:handover” for exchanging the handover request/select
records over NFC, and it MUST use the Bluetooth Object Push Profile for the actual
Bluetooth data transfer. For legacy reasons (to remain compatible with Android 4.1
devices), the implementation SHOULD still accept SNEP GET requests for exchanging the
handover request/select records over NFC. However an implementation itself SHOULD
NOT send SNEP GET requests for performing connection handover.
[C-1-13] MUST poll for all supported technologies while in NFC discovery mode.
SHOULD be in NFC discovery mode while the device is awake with the screen active and
the lock-screen unlocked.
SHOULD be capable of reading the barcode and URL (if encoded) of Thinfilm NFC
Barcode products.

(Note that publicly available links are not available for the JIS, ISO, and NFC Forum specifications
cited above.)
Android includes support for NFC Host Card Emulation (HCE) mode.
If device implementations include an NFC controller chipset capable of HCE (for NfcA and/or NfcB)
and support Application ID (AID) routing, they:

[C-2-1] MUST report the android.hardware.nfc.hce feature constant.
[C-2-2] MUST support NFC HCE APIs as defined in the Android SDK.

Page 94 of 122

http://static.googleusercontent.com/media/source.android.com/en/us/compatibility/ndef-push-protocol.pdf
http://developer.android.com/guide/topics/connectivity/nfc/nfc.html
http://developer.android.com/reference/android/provider/Settings.html#ACTION_NFCSHARING_SETTINGS
http://members.nfc-forum.org/specs/spec_list/#conn_handover
http://members.nfc-forum.org/apps/group_public/download.php/18688/NFCForum-AD-BTSSP_1_1.pdf
http://developer.android.com/reference/android/nfc/tech/NfcBarcode.html
http://developer.android.com/guide/topics/connectivity/nfc/hce.html

If device implementations include an NFC controller chipset capable of HCE for NfcF, and implement
the feature for third-party applications, they:

[C-3-1] MUST report the android.hardware.nfc.hcef feature constant.
[C-3-2] MUST implement the [NfcF Card Emulation APIs]
(https://developer.android.com/reference/android/nfc/cardemulation/NfcFCardEmulation.html)
as defined in the Android SDK.

If device implementations include general NFC support as described in this section and support
MIFARE technologies (MIFARE Classic, MIFARE Ultralight, NDEF on MIFARE Classic) in the
reader/writer role, they:

[C-4-1] MUST implement the corresponding Android APIs as documented by the Android
SDK.
[C-4-2] MUST report the feature com.nxp.mifare from the
android.content.pm.PackageManager.hasSystemFeature () method. Note that this is not a
standard Android feature and as such does not appear as a constant in the
android.content.pm.PackageManager class.

7.4.5. Minimum Network Capability

Device implementations:

[C-0-1] MUST include support for one or more forms of data networking. Specifically,
device implementations MUST include support for at least one data standard capable of
200Kbit/sec or greater. Examples of technologies that satisfy this requirement include
EDGE, HSPA, EV-DO, 802.11g, Ethernet, Bluetooth PAN, etc.
[C-0-2] MUST include an IPv6 networking stack and support IPv6 communication using the
managed APIs, such as java.net.Socket and java.net.URLConnection , as well as the native
APIs, such as AF_INET6 sockets.
[C-0-3] MUST enable IPv6 by default.
MUST ensure that IPv6 communication is as reliable as IPv4, for example.
[C-0-4] MUST maintain IPv6 connectivity in doze mode.
[C-0-5] Rate-limiting MUST NOT cause the device to lose IPv6 connectivity on any IPv6-
compliant network that uses RA lifetimes of at least 180 seconds.
SHOULD also include support for at least one common wireless data standard, such as
802.11 (Wi-Fi) when a physical networking standard (such as Ethernet) is the primary data
connection
MAY implement more than one form of data connectivity.

The required level of IPv6 support depends on the network type, as follows:
If devices implementations support Wi-Fi networks, they:

[C-1-1] MUST support dual-stack and IPv6-only operation on Wi-Fi.

If device impelementations support Ethernet networks, they:

[C-2-1] MUST support dual-stack operation on Ethernet.

If device implementations support cellular data, they:

[C-3-1] MUST simultaneously meet these requirements on each network to which it is
connected when a device is simultaneously connected to more than one network (e.g., Wi-

Page 95 of 122

http://developer.android.com/reference/android/content/pm/PackageManager.html

Fi and cellular data), .
SHOULD support IPv6 operation (IPv6-only and possibly dual-stack) on cellular data.

7.4.6. Sync Settings

Device implementations:

[C-0-1] MUST have the master auto-sync setting on by default so that the method
getMasterSyncAutomatically() returns “true”.

7.4.7. Data Saver

If device implementations include a metered connection, they are:

[SR] STRONGLY RECOMMENDED to provide the data saver mode.

If device implementations provide the data saver mode, they:

[C-1-1] MUST support all the APIs in the ConnectivityManager class as described in the
SDK documentation
[C-1-2] MUST provide a user interface in the settings, that handles the
Settings.ACTION_IGNORE_BACKGROUND_DATA_RESTRICTIONS_SETTINGS intent,
allowing users to add applications to or remove applications from the whitelist.

If device implementations do not provide the data saver mode, they:

[C-2-1] MUST return the value RESTRICT_BACKGROUND_STATUS_DISABLED for
ConnectivityManager.getRestrictBackgroundStatus()
[C-2-2] MUST NOT broadcast
ConnectivityManager.ACTION_RESTRICT_BACKGROUND_CHANGED .
[C-2-3] MUST have an activity that handles the
Settings.ACTION_IGNORE_BACKGROUND_DATA_RESTRICTIONS_SETTINGS intent but
MAY implement it as a no-op.

7.5. Cameras

If device implementations include at least one camera, they:

[C-1-1] MUST declare the android.hardware.camera.any feature flag.
[C-1-2] MUST be possible for an application to simultaneously allocate 3 RGBA_8888
bitmaps equal to the size of the images produced by the largest-resolution camera sensor
on the device, while camera is open for the purpose of basic preview and still capture.

7.5.1. Rear-Facing Camera

A rear-facing camera is a camera located on the side of the device opposite the display; that is, it
images scenes on the far side of the device, like a traditional camera.
Device implementations:

SHOULD include a rear-facing camera.

If device implementations include at least one rear-facing camera, they:

Page 96 of 122

http://developer.android.com/reference/android/content/ContentResolver.html
https://developer.android.com/training/basics/network-ops/data-saver.html
https://developer.android.com/reference/android/provider/Settings.html#ACTION_IGNORE_BACKGROUND_DATA_RESTRICTIONS_SETTINGS
https://developer.android.com/reference/android/net/ConnectivityManager.html#getRestrictBackgroundStatus%28%29

[C-1-1] MUST report the feature flag android.hardware.camera and
android.hardware.camera.any .
[C-1-2] MUST have a resolution of at least 2 megapixels.
SHOULD have either hardware auto-focus or software auto-focus implemented in the
camera driver (transparent to application software).
MAY have fixed-focus or EDOF (extended depth of field) hardware.
MAY include a flash.

If the Camera includes a flash:

[C-2-1] the flash lamp MUST NOT be lit while an android.hardware.Camera.PreviewCallback
instance has been registered on a Camera preview surface, unless the application has
explicitly enabled the flash by enabling the FLASH_MODE_AUTO or FLASH_MODE_ON
attributes of a Camera.Parameters object. Note that this constraint does not apply to the
device’s built-in system camera application, but only to third-party applications using
Camera.PreviewCallback .

7.5.2. Front-Facing Camera

A front-facing camera is a camera located on the same side of the device as the display; that is, a
camera typically used to image the user, such as for video conferencing and similar applications.
Device implementations:

MAY include a front-facing camera

If device implementations include at least one front-facing camera, they:

[C-1-1] MUST report the feature flag android.hardware.camera.any and
android.hardware.camera.front .
[C-1-2] MUST have a resolution of at least VGA (640x480 pixels).
[C-1-3] MUST NOT use a front-facing camera as the default for the Camera API and
MUST NOT configure the API to treat a front-facing camera as the default rear-facing
camera, even if it is the only camera on the device.
[C-1-5] The camera preview MUST be mirrored horizontally relative to the orientation
specified by the application when the current application has explicitly requested that the
Camera display be rotated via a call to the android.hardware.Camera.setDisplayOrientation()
method. Conversely, the preview MUST be mirrored along the device’s default horizontal
axis when the the current application does not explicitly request that the Camera display be
rotated via a call to the android.hardware.Camera.setDisplayOrientation() method.
[C-1-6] MUST NOT mirror the final captured still image or video streams returned to
application callbacks or committed to media storage.
[C-1-7] MUST mirror the image displayed by the postview in the same manner as the
camera preview image stream.
MAY include features (such as auto-focus, flash, etc.) available to rear-facing cameras as
described in section 7.5.1 .

If device implementations are capable of being rotated by user (such as automatically via an
accelerometer or manually via user input):

[C-2-1] The camera preview MUST be mirrored horizontally relative to the device’s current
orientation.

7.5.3. External Camera

Page 97 of 122

http://developer.android.com/reference/android/hardware/Camera.html#setDisplayOrientation(int)
http://developer.android.com/reference/android/hardware/Camera.html#setDisplayOrientation(int)

Device implementations:

MAY include support for an external camera that is not necessarily always connected.

If device impelmentations include support for an external camera, they:

[C-1-1] MUST declare the platform feature flag android.hardware.camera.external and
android.hardware camera.any .
[C-1-2] MUST support USB Video Class (UVC 1.0 or higher) if the external camera
connects through the USB port.
SHOULD support video compressions such as MJPEG to enable transfer of high-quality
unencoded streams (i.e. raw or independently compressed picture streams).
MAY support multiple cameras.
MAY support camera-based video encoding. If supported, a simultaneous unencoded /
MJPEG stream (QVGA or greater resolution) MUST be accessible to the device
implementation.

7.5.4. Camera API Behavior

Android includes two API packages to access the camera, the newer android.hardware.camera2 API
expose lower-level camera control to the app, including efficient zero-copy burst/streaming flows and
per-frame controls of exposure, gain, white balance gains, color conversion, denoising, sharpening,
and more.
The older API package, android.hardware.Camera , is marked as deprecated in Android 5.0 but as it
should still be available for apps to use. Android device implementations MUST ensure the continued
support of the API as described in this section and in the Android SDK.
Device implementations MUST implement the following behaviors for the camera-related APIs, for all
available cameras. Device implementations:

[C-0-1] MUST use android.hardware.PixelFormat.YCbCr_420_SP for preview data provided to
application callbacks when an application has never called
android.hardware.Camera.Parameters.setPreviewFormat(int) .
[C-0-2] MUST further be in the NV21 encoding format when an application registers an
android.hardware.Camera.PreviewCallback instance and the system calls the
onPreviewFrame() method and the preview format is YCbCr_420_SP, the data in the byte[]
passed into onPreviewFrame() . That is, NV21 MUST be the default.
[C-0-3] MUST support the YV12 format (as denoted by the
android.graphics.ImageFormat.YV12 constant) for camera previews for both front- and rear-
facing cameras for android.hardware.Camera . (The hardware video encoder and camera
may use any native pixel format, but the device implementation MUST support conversion
to YV12.)
[C-0-4] MUST support the android.hardware.ImageFormat.YUV_420_888 and
android.hardware.ImageFormat.JPEG formats as outputs through the
android.media.ImageReader API for android.hardware.camera2 devices that advertise
REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE capability in
android.request.availableCapabilities .
[C-0-5] MUST still implement the full Camera API included in the Android SDK
documentation, regardless of whether the device includes hardware autofocus or other
capabilities. For instance, cameras that lack autofocus MUST still call any registered
android.hardware.Camera.AutoFocusCallback instances (even though this has no relevance to
a non-autofocus camera.) Note that this does apply to front-facing cameras; for instance,
even though most front-facing cameras do not support autofocus, the API callbacks must
still be “faked” as described.

Page 98 of 122

https://developer.android.com/reference/android/hardware/camera2/CameraMetadata.html#REQUEST_AVAILABLE_CAPABILITIES_BACKWARD_COMPATIBLE
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics.html#REQUEST_AVAILABLE_CAPABILITIES
http://developer.android.com/reference/android/hardware/Camera.html

[C-0-6] MUST recognize and honor each parameter name defined as a constant on the
android.hardware.Camera.Parameters class. Conversely, device implementations MUST NOT
honor or recognize string constants passed to the android.hardware.Camera.setParameters()
method other than those documented as constants on the
android.hardware.Camera.Parameters . That is, device implementations MUST support all
standard Camera parameters if the hardware allows, and MUST NOT support custom
Camera parameter types. For instance, device implementations that support image
capture using high dynamic range (HDR) imaging techniques MUST support camera
parameter Camera.SCENE_MODE_HDR .
[C-0-7] MUST report the proper level of support with the
android.info.supportedHardwareLevel property as described in the Android SDK and report
the appropriate framework feature flags .
[C-0-8] MUST also declare its individual camera capabilities of android.hardware.camera2 via
the android.request.availableCapabilities property and declare the appropriate feature flags ;
MUST define the feature flag if any of its attached camera devices supports the feature.
[C-0-9] MUST broadcast the Camera.ACTION_NEW_PICTURE intent whenever a new
picture is taken by the camera and the entry of the picture has been added to the media
store.
[C-0-10] MUST broadcast the Camera.ACTION_NEW_VIDEO intent whenever a new video
is recorded by the camera and the entry of the picture has been added to the media store.

7.5.5. Camera Orientation

If device implementations have a front- or a rear-facing camera, such camera(s):

[C-1-1] MUST be oriented so that the long dimension of the camera aligns with the
screen’s long dimension. That is, when the device is held in the landscape orientation,
cameras MUST capture images in the landscape orientation. This applies regardless of the
device’s natural orientation; that is, it applies to landscape-primary devices as well as
portrait-primary devices.

7.6. Memory and Storage

7.6.1. Minimum Memory and Storage

Device implementations:

[C-0-1] MUST include a Download Manager that applications MAY use to download data
files and they MUST be capable of downloading individual files of at least 100MB in size to
the default “cache” location.

7.6.2. Application Shared Storage

Device implementations:

[C-0-1] MUST offer storage to be shared by applications, also often referred as “shared
external storage”, "application shared storage" or by the Linux path "/sdcard" it is mounted
on.
[C-0-2] MUST be configured with shared storage mounted by default, in other words “out
of the box”, regardless of whether the storage is implemented on an internal storage
component or a removable storage medium (e.g. Secure Digital card slot).
[C-0-3] MUST mount the application shared storage directly on the Linux path sdcard or
include a Linux symbolic link from sdcard to the actual mount point.

Page 99 of 122

http://developer.android.com/reference/android/hardware/Camera.Parameters.html
https://developer.android.com/reference/android/hardware/camera2/CameraCharacteristics.html#INFO_SUPPORTED_HARDWARE_LEVEL
http://source.android.com/devices/camera/versioning.html
http://source.android.com/devices/camera/versioning.html
http://developer.android.com/reference/android/app/DownloadManager.html

[C-0-4] MUST enforce the android.permission.WRITE_EXTERNAL_STORAGE permission
on this shared storage as documented in the SDK. Shared storage MUST otherwise be
writable by any application that obtains that permission.

Device implementations MAY meet the above requirements using either:

a user-accessible removable storage, such as a Secure Digital (SD) card slot.
a portion of the internal (non-removable) storage as implemented in the Android Open
Source Project (AOSP).

If device implementations use removable storage to satisfy the above requirements, they:

[C-1-1] MUST implement a toast or pop-up user interface warning the user when there is
no storage medium inserted in the slot.
[C-1-2] MUST include a FAT-formatted storage medium (e.g. SD card) or show on the box
and other material available at time of purchase that the storage medium has to be
purchased separately.

If device implementations use a protion of the non-removable storage to satisfy the above
requirements, they:

SHOULD use the AOSP implementation of the internal application shared storage.
MAY share the storage space with the application private data.

If device implementations include multiple shared storage paths (such as both an SD card slot and
shared internal storage), they:

[C-3-1] MUST allow only pre-installed and privileged Android applications with the
WRITE_EXTERNAL_STORAGE permission to write to the secondary external storage,
except when writing to their package-specific directories or within the URI returned by firing
the ACTION_OPEN_DOCUMENT_TREE intent.

If device implementations have a USB port with USB peripheral mode support, they:

[C-3-1] MUST provide a mechanism to access the data on the application shared storage
from a host computer.
SHOULD expose content from both storage paths transparently through Android’s media
scanner service and android.provider.MediaStore .
MAY use USB mass storage, but SHOULD use Media Transfer Protocol to satisfy this
requirement.

If device implementations have a USB port with USB peripheral mode and support Media Transfer
Protocol, they:

SHOULD be compatible with the reference Android MTP host, Android File Transfer .
SHOULD report a USB device class of 0x00.
SHOULD report a USB interface name of 'MTP'.

7.6.3. Adoptable Storage

If the device is expected to be mobile in nature unlike Television, device implementations are:

[SR] STRONGLY RECOMMENDED to implement the adoptable storage in a long-term

Page 100 of 122

http://www.android.com/filetransfer

stable location, since accidentally disconnecting them can cause data loss/corruption.

If the removable storage device port is in a long-term stable location, such as within the battery
compartment or other protective cover, device implementations are:

[SR] STRONGLY RECOMMENDED to implement adoptable storage .

7.7. USB

If device implementations have a USB port, they:

SHOULD support USB peripheral mode and SHOULD support USB host mode.

7.7.1. USB peripheral mode

If device implementations include a USB port supporting peripheral mode:

[C-1-1] The port MUST be connectable to a USB host that has a standard type-A or type-C
USB port.
[C-1-2] MUST report the correct value of iSerialNumber in USB standard device descriptor
through android.os.Build.SERIAL .
[C-1-3] MUST detect 1.5A and 3.0A chargers per the Type-C resistor standard and MUST
detect changes in the advertisement if they support Type-C USB.
[SR] The port SHOULD use micro-B, micro-AB or Type-C USB form factor. Existing and
new Android devices are STRONGLY RECOMMENDED to meet these requirements so
they will be able to upgrade to the future platform releases.
[SR] The port SHOULD be located on the bottom of the device (according to natural
orientation) or enable software screen rotation for all apps (including home screen), so that
the display draws correctly when the device is oriented with the port at bottom. Existing
and new Android devices are STRONGLY RECOMMENDED to meet these
requirements so they will be able to upgrade to future platform releases.
[SR] SHOULD implement support to draw 1.5 A current during HS chirp and traffic as
specified in the USB Battery Charging specification, revision 1.2 . Existing and new
Android devices are STRONGLY RECOMMENDED to meet these requirements so they
will be able to upgrade to the future platform releases.
[SR] STRONGLY RECOMMENDED to not support proprietary charging methods that
modify Vbus voltage beyond default levels, or alter sink/source roles as such may result in
interoperability issues with the chargers or devices that support the standard USB Power
Delivery methods. While this is called out as "STRONGLY RECOMMENDED", in future
Android versions we might REQUIRE all type-C devices to support full interoperability with
standard type-C chargers.
[SR] STRONGLY RECOMMENDED to support Power Delivery for data and power role
swapping when they support Type-C USB and USB host mode.
SHOULD support Power Delivery for high-voltage charging and support for Alternate
Modes such as display out.
SHOULD implement the Android Open Accessory (AOA) API and specification as
documented in the Android SDK documentation.

If device implementations including a USB port, implement the AOA specification, they:

[C-2-1] MUST declare support for the hardware feature android.hardware.usb.accessory .
[C-2-2] The USB mass storage class MUST include the string "android" at the end of the
interface description iInterface string of the USB mass storage

Page 101 of 122

http://source.android.com/devices/storage/adoptable.html
http://www.usb.org/developers/docs/devclass_docs/BCv1.2_070312.zip
http://developer.android.com/guide/topics/connectivity/usb/accessory.html

SHOULD NOT implement AOAv2 audio documented in the Android Open Accessory
Protocol 2.0 documentation. AOAv2 audio is deprecated as of Android version 8.0 (API
level 26).

7.7.2. USB host mode

If device implementations include a USB port supporting host mode, they:

[C-1-1] MUST implement the Android USB host API as documented in the Android SDK
and MUST declare support for the hardware feature android.hardware.usb.host .
[C-1-2] MUST implement support to connect standard USB peripherals, in other words,
they MUST either:

Have an on-device type C port or ship with cable(s) adapting an on-device
proprietary port to a standard USB type-C port (USB Type-C device).
Have an on-device type A or ship with cable(s) adapting an on-device
proprietary port to a standard USB type-A port.
Have an on-device micro-AB port, which SHOULD ship with a cable adapting to
a standard type-A port.

[C-1-3] MUST NOT ship with an adapter converting from USB type A or micro-AB ports to
a type-C port (receptacle).
[SR] STRONGLY RECOMMENDED to implement the USB audio class as documented in
the Android SDK documentation.
SHOULD support charging the connected USB peripheral device while in host mode;
advertising a source current of at least 1.5A as specified in the Termination Parameters
section of the USB Type-C Cable and Connector Specification Revision 1.2 for USB Type-
C connectors or using Charging Downstream Port(CDP) output current range as specified
in the USB Battery Charging specifications, revision 1.2 for Micro-AB connectors.
SHOULD implement and support USB Type-C standards.

If device implementations include a USB port supporting host mode and the USB audio class, they:

[C-2-1] MUST support the USB HID class
[C-2-2] MUST support the detection and mapping of the following HID data fields specified
in the USB HID Usage Tables and the Voice Command Usage Request to the KeyEvent
constants as below:

Usage Page (0xC) Usage ID (0x0CD): KEYCODE_MEDIA_PLAY_PAUSE
Usage Page (0xC) Usage ID (0x0E9): KEYCODE_VOLUME_UP
Usage Page (0xC) Usage ID (0x0EA): KEYCODE_VOLUME_DOWN
Usage Page (0xC) Usage ID (0x0CF): KEYCODE_VOICE_ASSIST

If device implementations include a USB port supporting host mode and the Storage Access
Framework (SAF), they:

[C-3-1] MUST recognize any remotely connected MTP (Media Transfer Protocol) devices
and make their contents accessible through the ACTION_GET_CONTENT ,
ACTION_OPEN_DOCUMENT , and ACTION_CREATE_DOCUMENT intents. .

If device implementations include a USB port supporting host mode and USB Type-C, they:

[C-4-1] MUST implement Dual Role Port functionality as defined by the USB Type-C
specification (section 4.5.1.3.3).
[SR] STRONGLY RECOMMENDED to support DisplayPort, SHOULD support USB

Page 102 of 122

https://source.android.com/devices/accessories/aoa2#audio-support
http://developer.android.com/guide/topics/connectivity/usb/host.html
http://developer.android.com/reference/android/hardware/usb/UsbConstants.html#USB_CLASS_AUDIO
http://www.usb.org/developers/docs/usb_31_021517.zip
http://www.usb.org/developers/docs/devclass_docs/BCv1.2_070312.zip
https://developer.android.com/reference/android/hardware/usb/UsbConstants.html#USB_CLASS_HID
http://www.usb.org/developers/hidpage/Hut1_12v2.pdf
http://www.usb.org/developers/hidpage/Voice_Command_Usage.pdf
https://developer.android.com/reference/android/view/KeyEvent.html

SuperSpeed Data Rates, and are STRONGLY RECOMMENDED to support Power
Delivery for data and power role swapping.
[SR] STRONGLY RECOMMENDED to NOT support Audio Adapter Accessory Mode as
described in the Appendix A of the USB Type-C Cable and Connector Specification
Revision 1.2 .
SHOULD implement the Try.* model that is most appropriate for the device form factor. For
example a handheld device SHOULD implement the Try.SNK model.

7.8. Audio

7.8.1. Microphone

If device implementations include a microphone, they:

[C-1-1] MUST report the android.hardware.microphone feature constant.
[C-1-2] MUST meet the audio recording requirements in section 5.4 .
[C-1-3] MUST meet the audio latency requirements in section 5.6 .
[SR] STRONGLY RECOMMENDED to support near-ultrasound recording as described in
section 7.8.3 .

If device implementations omit a microphone, they:

[C-2-1] MUST NOT report the android.hardware.microphone feature constant.
[C-2-2] MUST implement the audio recording API at least as no-ops, per section 7 .

7.8.2. Audio Output

If device implementations include a speaker or an audio/multimedia output port for an audio output
peripheral such as a 4 conductor 3.5mm audio jack or USB host mode port using USB audio class ,
they:

[C-1-1] MUST report the android.hardware.audio.output feature constant.
[C-1-2] MUST meet the audio playback requirements in section 5.5 .
[C-1-3] MUST meet the audio latency requirements in section 5.6 .
[SR] STRONGLY RECOMMENDED to support near-ultrasound playback as described in
section 7.8.3 .

If device implementations do not include a speaker or audio output port, they:

[C-2-1] MUST NOT report the android.hardware.audio.output feature.
[C-2-2] MUST implement the Audio Output related APIs as no-ops at least.

For the purposes of this section, an "output port" is a physical interface such as a 3.5mm audio jack,
HDMI, or USB host mode port with USB audio class. Support for audio output over radio-based
protocols such as Bluetooth, WiFi, or cellular network does not qualify as including an "output port".

7.8.2.1. Analog Audio Ports

In order to be compatible with the headsets and other audio accessories using the 3.5mm audio plug
across the Android ecosystem, if a device implementation includes one or more analog audio ports, at
least one of the audio port(s) SHOULD be a 4 conductor 3.5mm audio jack.
If device implementations have a 4 conductor 3.5mm audio jack, they:

Page 103 of 122

http://www.usb.org/developers/docs/
https://source.android.com/devices/audio/usb#audioClass
https://en.wikipedia.org/wiki/Computer_port_%28hardware%29
http://source.android.com/accessories/headset-spec.html

[C-1-1] MUST support audio playback to stereo headphones and stereo headsets with a
microphone.
[C-1-2] MUST support TRRS audio plugs with the CTIA pin-out order.
[C-1-3] MUST support the detection and mapping to the keycodes for the following 3
ranges of equivalent impedance between the microphone and ground conductors on the
audio plug:

70 ohm or less : KEYCODE_HEADSETHOOK
210-290 ohm : KEYCODE_VOLUME_UP
360-680 ohm : KEYCODE_VOLUME_DOWN

[C-1-4] MUST trigger ACTION_HEADSET_PLUG upon a plug insert, but only after all
contacts on plug are touching their relevant segments on the jack.
[C-1-5] MUST be capable of driving at least 150mV ± 10% of output voltage on a 32 ohm
speaker impedance.
[C-1-6] MUST have a microphone bias voltage between 1.8V ~ 2.9V.
[SR] STRONGLY RECOMMENDED to detect and map to the keycode for the following
range of equivalent impedance between the microphone and ground conductors on the
audio plug:

110-180 ohm: KEYCODE_VOICE_ASSIST
SHOULD support audio plugs with the OMTP pin-out order.
SHOULD support audio recording from stereo headsets with a microphone.

If device implementations have a 4 conductor 3.5mm audio jack and support a microphone, and
broadcast the android.intent.action.HEADSET_PLUG with the extra value microphone set as 1, they:

[C-2-1] MUST support the detection of microphone on the plugged in audio accessory.

7.8.3. Near-Ultrasound

Near-Ultrasound audio is the 18.5 kHz to 20 kHz band.
Device implementations:

MUST correctly report the support of near-ultrasound audio capability via the
AudioManager.getProperty API as follows:

If PROPERTY_SUPPORT_MIC_NEAR_ULTRASOUND is "true", the following requirements MUST be
met by the VOICE_RECOGNITION and UNPROCESSED audio sources:

[C-1-1] The microphone's mean power response in the 18.5 kHz to 20 kHz band MUST be
no more than 15 dB below the response at 2 kHz.
[C-1-2] The microphone's unweighted signal to noise ratio over 18.5 kHz to 20 kHz for a 19
kHz tone at -26 dBFS MUST be no lower than 50 dB.

If PROPERTY_SUPPORT_SPEAKER_NEAR_ULTRASOUND is "true":

[C-2-1] The speaker's mean response in 18.5 kHz - 20 kHz MUST be no lower than 40 dB
below the response at 2 kHz.

7.9. Virtual Reality

Android includes APIs and facilities to build "Virtual Reality" (VR) applications including high quality
mobile VR experiences. Device implementations MUST properly implement these APIs and
behaviors, as detailed in this section.

Page 104 of 122

http://developer.android.com/reference/android/media/AudioManager.html#getProperty%28java.lang.String%29
http://developer.android.com/reference/android/media/AudioManager.html#PROPERTY_SUPPORT_MIC_NEAR_ULTRASOUND
http://developer.android.com/reference/android/media/AudioManager.html#PROPERTY_SUPPORT_SPEAKER_NEAR_ULTRASOUND

7.9.1. Virtual Reality Mode

Android includes support for VR Mode , a feature which handles stereoscopic rendering of
notifications and disables monocular system UI components while a VR application has user focus.

7.9.2. Virtual Reality High Performance

If device implementations identify the support of high performance VR for longer user periods through
the android.hardware.vr.high_performance feature flag, they:

[C-1-1] MUST have at least 2 physical cores.
[C-1-2] MUST declare android.software.vr.mode feature .
[C-1-3] MUST support sustained performance mode.
[C-1-4] MUST support OpenGL ES 3.2.
[C-1-5] MUST support Vulkan Hardware Level 0 and SHOULD support Vulkan Hardware
Level 1.
[C-1-6] MUST implement EGL_KHR_mutable_render_buffer ,
EGL_ANDROID_front_buffer_auto_refresh , EGL_ANDROID_get_native_client_buffer ,
EGL_KHR_fence_sync , EGL_KHR_wait_sync , EGL_IMG_context_priority ,
EGL_EXT_protected_content , and expose the extensions in the list of available EGL
extensions.
[C-1-7] The GPU and display MUST be able to synchronize access to the shared front
buffer such that alternating-eye rendering of VR content at 60fps with two render contexts
will be displayed with no visible tearing artifacts.
[C-1-8] MUST implement GL_EXT_multisampled_render_to_texture , GL_OVR_multiview ,
GL_OVR_multiview2 , GL_OVR_multiview_multisampled_render_to_texture ,
GL_EXT_protected_textures , GL_EXT_EGL_image_array , GL_EXT_external_buffer , and
expose the extensions in the list of available GL extensions.
[C-1-9] MUST implement support for AHardwareBuffer flags
AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER and
AHARDWAREBUFFER_USAGE_SENSOR_DIRECT_DATA as described in the NDK.
[C-1-10] MUST implement support for AHardwareBuffers with more than one layer.
[C-1-11] MUST support H.264 decoding at least 3840x2160@30fps-40Mbps (equivalent to
4 instances of 1920x1080@30fps-10Mbps or 2 instances of 1920x1080@60fps-20Mbps).
[C-1-12] MUST support HEVC and VP9, MUST be capable to decode at least
1920x1080@30fps-10Mbps and SHOULD be capable to decode 3840x2160@30fps-
20Mbps (equivalent to 4 instances of 1920x1080@30fps-5Mbps).
[C-1-13] MUST support HardwarePropertiesManager.getDeviceTemperatures API and return
accurate values for skin temperature.
[C-1-14] MUST have an embedded screen, and its resolution MUST be at least be
FullHD(1080p) and STRONGLY RECOMMENDED TO BE be QuadHD (1440p) or higher.
[C-1-15] The display MUST update at least 60 Hz while in VR Mode.
[C-1-16] The display latency (as measured on Gray-to-Gray, White-to-Black, and Black-to-
White switching time) MUST be ≤ 6 milliseconds.
[C-1-17] The display MUST support a low-persistence mode with ≤ 5 milliseconds
persistence, persistence being defined as the amount of time for which a pixel is emitting
light.
[C-1-18] MUST support Bluetooth 4.2 and Bluetooth LE Data Length Extension section
7.4.3 .
[C-1-19] MUST support and properly report Direct Channel Type for all of the following
default sensor types:

TYPE_ACCELEROMETER

Page 105 of 122

https://developer.android.com/reference/android/app/Activity.html#setVrModeEnabled%28boolean, android.content.ComponentName%29
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_mutable_render_buffer.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_front_buffer_auto_refresh.txt
https://www.khronos.org/registry/EGL/extensions/ANDROID/EGL_ANDROID_get_native_client_buffer.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_fence_sync.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_wait_sync.txt
https://www.khronos.org/registry/EGL/extensions/IMG/EGL_IMG_context_priority.txt
https://www.khronos.org/registry/EGL/extensions/EXT/EGL_EXT_protected_content.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_multisampled_render_to_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/OVR/OVR_multiview.txt
https://www.khronos.org/registry/OpenGL/extensions/OVR/OVR_multiview2.txt
https://www.khronos.org/registry/OpenGL/extensions/OVR/OVR_multiview_multisampled_render_to_texture.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_protected_textures.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_EGL_image_array.txt
https://www.khronos.org/registry/OpenGL/extensions/EXT/EXT_external_buffer.txt
https://developer.android.com/ndk/reference/hardware__buffer_8h.html
https://developer.android.com/reference/android/hardware/Sensor.html#isDirectChannelTypeSupported%28int%29"

TYPE_ACCELEROMETER_UNCALIBRATED
TYPE_GYROSCOPE
TYPE_GYROSCOPE_UNCALIBRATED
TYPE_MAGNETIC_FIELD
TYPE_MAGNETIC_FIELD_UNCALIBRATED

[C-1-20] MUST support the TYPE_HARDWARE_BUFFER direct channel type for all Direct
Channel Types listed above.
[SR] Are STRONGLY RECOMMENDED to support android.hardware.sensor.hifi_sensors
feature and MUST meet the gyroscope, accelerometer, and magnetometer related
requirements for android.hardware.hifi_sensors .
MAY provide an exclusive core to the foreground application and MAY support the
Process.getExclusiveCores API to return the numbers of the cpu cores that are exclusive to
the top foreground application. If exclusive core is supported then the core MUST not allow
any other userspace processes to run on it (except device drivers used by the application),
but MAY allow some kernel processes to run as necessary.

8. Performance and Power

Some minimum performance and power criteria are critical to the user experience and impact the
baseline assumptions developers would have when developing an app.

8.1. User Experience Consistency

A smooth user interface can be provided to the end user if there are certain minimum requirements to
ensure a consistent frame rate and response times for applications and games. Device
implementations, depending on the device type, MAY have measurable requirements for the user
interface latency and task switching as described in section 2 .

8.2. File I/O Access Performance

Providing a common baseline for a consistent file access performance on the application private data
storage (/data partition) allows app developers to set a proper expectation that would help their
software design. Device implementations, depending on the device type, MAY have certain
requirements described in section 2 for the following read and write operations:

Sequential write performance . Measured by writing a 256MB file using 10MB write
buffer.
Random write performance . Measured by writing a 256MB file using 4KB write buffer.
Sequential read performance . Measured by reading a 256MB file using 10MB write
buffer.
Random read performance . Measured by reading a 256MB file using 4KB write buffer.

8.3. Power-Saving Modes

Android includes App Standby and Doze power-saving modes to optimize battery usage. [SR] All
Apps exempted from these modes are STRONGLY RECOMMENDED to be made visible to the end
user. [SR] The triggering, maintenance, wakeup algorithms and the use of global system settings of
these power-saving modes are STRONGLY RECOMMENDED NOT to deviate from the Android Open
Source Project.
In addition to the power-saving modes, Android device implementations MAY implement any or all of
the 4 sleeping power states as defined by the Advanced Configuration and Power Interface (ACPI).

Page 106 of 122

https://developer.android.com/reference/android/hardware/SensorDirectChannel.html#TYPE_HARDWARE_BUFFER

If device implementations implements S3 and S4 power states as defined by the ACPI, they:

[C-1-1] MUST only enter these states when closing a lid that is physically part of the
device.

8.4. Power Consumption Accounting

A more accurate accounting and reporting of the power consumption provides the app developer both
the incentives and the tools to optimize the power usage pattern of the application.
Device implementations:

[SR] STRONGLY RECOMMENDED to provide a per-component power profile that defines
the current consumption value for each hardware component and the approximate battery
drain caused by the components over time as documented in the Android Open Source
Project site.
[SR] STRONGLY RECOMMENDED to report all power consumption values in milliampere
hours (mAh).
[SR] STRONGLY RECOMMENDED to report CPU power consumption per each process's
UID. The Android Open Source Project meets the requirement through the uid_cputime
kernel module implementation.
[SR] STRONGLY RECOMMENDED to make this power usage available via the adb shell
dumpsys batterystats shell command to the app developer.
SHOULD be attributed to the hardware component itself if unable to attribute hardware
component power usage to an application.

8.5. Consistent Performance

Performance can fluctuate dramatically for high-performance long-running apps, either because of the
other apps running in the background or the CPU throttling due to temperature limits. Android includes
programmatic interfaces so that when the device is capable, the top foreground application can
request that the system optimize the allocation of the resources to address such fluctuations.
Device implementations:

[C-0-1] MUST report the support of Sustained Performance Mode accurately through the
PowerManager.isSustainedPerformanceModeSupported() API method.

SHOULD support Sustained Performance Mode.

If device implementations report support of Sustained Performance Mode, they:

[C-1-1] MUST provide the top foreground application a consistent level of performance for
at least 30 minutes, when the app requests it.
[C-1-2] MUST honor the Window.setSustainedPerformanceMode() API and other related
APIs.

If device implementations include two or more CPU cores, they:

SHOULD provide at least one exclusive core that can be reserved by the top foreground
application.

If device implementations support reserving one exclusive core for the top foreground application,
they:

Page 107 of 122

http://source.android.com/devices/tech/power/values.html
http://source.android.com/devices/tech/power/batterystats.html
https://developer.android.com/reference/android/os/PowerManager.html#isSustainedPerformanceModeSupported%28%29
https://developer.android.com/reference/android/view/Window.html#setSustainedPerformanceMode%28boolean%29

[C-2-1] MUST report through the Process.getExclusiveCores() API method the ID numbers of
the exclusive cores that can be reserved by the top foreground application.
[C-2-2] MUST not allow any user space processes except the device drivers used by the
application to run on the exclusive cores, but MAY allow some kernel processes to run as
necessary.

If device implementations do not support an exclusive core, they:

[C-3-1] MUST return an empty list through the Process.getExclusiveCores() API method.

9. Security Model Compatibility

Device implementations:

[C-0-1] MUST implement a security model consistent with the Android platform security
model as defined in Security and Permissions reference document in the APIs in the
Android developer documentation.

[C-0-2] MUST support installation of self-signed applications without requiring any
additional permissions/certificates from any third parties/authorities. Specifically,
compatible devices MUST support the security mechanisms described in the follow
subsections.

9.1. Permissions

Device implementations:

[C-0-1] MUST support the Android permissions model as defined in the Android developer
documentation. Specifically, they MUST enforce each permission defined as described in
the SDK documentation; no permissions may be omitted, altered, or ignored.

MAY add additional permissions, provided the new permission ID strings are not in the
android.* namespace.

[C-0-2] Permissions with a protectionLevel of PROTECTION_FLAG_PRIVILEGED MUST
only be granted to apps preloaded in the privileged path(s) of the system image and within
the subset of the explicitly whitelisted permissions for each app. The AOSP implementation
meets this requirement by reading and honoring the whitelisted permissions for each app
from the files in the etc/permissions/ path and using the system/priv-app path as the
privileged path.

Permissions with a protection level of dangerous are runtime permissions. Applications with
targetSdkVersion > 22 request them at runtime.
Device implementations:

[C-0-3] MUST show a dedicated interface for the user to decide whether to grant the
requested runtime permissions and also provide an interface for the user to manage
runtime permissions.
[C-0-4] MUST have one and only one implementation of both user interfaces.
[C-0-5] MUST NOT grant any runtime permissions to preinstalled apps unless:
the user's consent can be obtained before the application uses it
the runtime permissions are associated with an intent pattern for which the preinstalled
application is set as the default handler

Page 108 of 122

https://developer.android.com/reference/android/os/Process.html#getExclusiveCores%28%29
https://developer.android.com/reference/android/os/Process.html#getExclusiveCores%28%29
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html
https://developer.android.com/reference/android/content/pm/PermissionInfo.html#PROTECTION_FLAG_PRIVILEGED

If device implementations include a pre-installed app or wish to allow third-party apps to access the
usage statistics, they:

[C-1-1] are STRONGLY RECOMMENDED provide user-accessible mechanism to grant or
revoke access to the usage stats in response to the
android.settings.ACTION_USAGE_ACCESS_SETTINGS intent for apps that declare the
android.permission.PACKAGE_USAGE_STATS permission.

If device implementations intend to disallow any apps, including pre-installed apps, from accessing the
usage statistics, they:

[C-2-1] MUST still have an activity that handles the
android.settings.ACTION_USAGE_ACCESS_SETTINGS intent pattern but MUST implement
it as a no-op, that is to have an equivalent behavior as when the user is declined for
access.

9.2. UID and Process Isolation

Device implementations:

[C-0-1] MUST support the Android application sandbox model, in which each application
runs as a unique Unixstyle UID and in a separate process.
[C-0-2] MUST support running multiple applications as the same Linux user ID, provided
that the applications are properly signed and constructed, as defined in the Security and
Permissions reference .

9.3. Filesystem Permissions

Device implementations:

[C-0-1] MUST support the Android file access permissions model as defined in the
Security and Permissions reference .

9.4. Alternate Execution Environments

Device implementations MUST keep consistency of the Android security and permission model, even
if they include runtime environments that execute applications using some other software or
technology than the Dalvik Executable Format or native code. In other words:

[C-0-1] Alternate runtimes MUST themselves be Android applications, and abide by the
standard Android security model, as described elsewhere in section 9 .

[C-0-2] Alternate runtimes MUST NOT be granted access to resources protected by
permissions not requested in the runtime’s AndroidManifest.xml file via the < uses-permission
> mechanism.

[C-0-3] Alternate runtimes MUST NOT permit applications to make use of features
protected by Android permissions restricted to system applications.

[C-0-4] Alternate runtimes MUST abide by the Android sandbox model and installed
applications using an alternate runtime MUST NOT reuse the sandbox of any other app
installed on the device, except through the standard Android mechanisms of shared user
ID and signing certificate.

[C-0-5] Alternate runtimes MUST NOT launch with, grant, or be granted access to the
sandboxes corresponding to other Android applications.

Page 109 of 122

https://developer.android.com/reference/android/provider/Settings.html#ACTION_USAGE_ACCESS_SETTINGS
https://developer.android.com/reference/android/provider/Settings.html#ACTION_USAGE_ACCESS_SETTINGS
http://developer.android.com/guide/topics/security/permissions.html
http://developer.android.com/guide/topics/security/permissions.html

[C-0-6] Alternate runtimes MUST NOT be launched with, be granted, or grant to other
applications any privileges of the superuser (root), or of any other user ID.

[C-0-7] When the .apk files of alternate runtimes are included in the system image of device
implementations, it MUST be signed with a key distinct from the key used to sign other
applications included with the device implementations.

[C-0-8] When installing applications, alternate runtimes MUST obtain user consent for the
Android permissions used by the application.

[C-0-9] When an application needs to make use of a device resource for which there is a
corresponding Android permission (such as Camera, GPS, etc.), the alternate runtime
MUST inform the user that the application will be able to access that resource.

[C-0-10] When the runtime environment does not record application capabilities in this
manner, the runtime environment MUST list all permissions held by the runtime itself when
installing any application using that runtime.

Alternate runtimes SHOULD install apps via the PackageManager into separate Android
sandboxes (Linux user IDs, etc.).

Alternate runtimes MAY provide a single Android sandbox shared by all applications using
the alternate runtime.

9.5. Multi-User Support

Android includes support for multiple users and provides support for full user isolation.

Device implementations MAY but SHOULD NOT enable multi-user if they use removable
media for primary external storage.

If device implementations include multiple users, they:

[C-1-1] MUST meet the following requirements related to multi-user support .
[C-1-2] MUST, for each user, implement a security model consistent with the Android
platform security model as defined in Security and Permissions reference document in the
APIs.
[C-1-3] MUST have separate and isolated shared application storage (a.k.a. /sdcard)
directories for each user instance.
[C-1-4] MUST ensure that applications owned by and running on behalf a given user
cannot list, read, or write to the files owned by any other user, even if the data of both
users are stored on the same volume or filesystem.
[C-1-5] MUST encrypt the contents of the SD card when multiuser is enabled using a key
stored only on non-removable media accessible only to the system if device
implementations use removable media for the external storage APIs. As this will make the
media unreadable by a host PC, device implementations will be required to switch to MTP
or a similar system to provide host PCs with access to the current user’s data.

If device implementations include multiple users and do not declare the android.hardware.telephony
feature flag, they:

[C-2-1] MUST support restricted profiles, a feature that allows device owners to manage
additional users and their capabilities on the device. With restricted profiles, device owners
can quickly set up separate environments for additional users to work in, with the ability to
manage finer-grained restrictions in the apps that are available in those environments.

If device implementations include multiple users and declare the android.hardware.telephony feature

Page 110 of 122

http://developer.android.com/reference/android/os/UserManager.html
http://developer.android.com/reference/android/os/Environment.html
http://source.android.com/devices/storage/traditional.html
http://developer.android.com/guide/topics/security/permissions.html

flag, they:

[C-3-1] MUST NOT support restricted profiles but MUST align with the AOSP
implementation of controls to enable /disable other users from accessing the voice calls
and SMS.

9.6. Premium SMS Warning

Android includes support for warning users of any outgoing premium SMS message . Premium SMS
messages are text messages sent to a service registered with a carrier that may incur a charge to the
user.
If device implementations declare support for android.hardware.telephony , they:

[C-1-1] MUST warn users before sending a SMS message to numbers identified by regular
expressions defined in /data/misc/sms/codes.xml file in the device. The upstream Android
Open Source Project provides an implementation that satisfies this requirement.

9.7. Kernel Security Features

The Android Sandbox includes features that use the Security-Enhanced Linux (SELinux) mandatory
access control (MAC) system, seccomp sandboxing, and other security features in the Linux kernel.
Device implementations:

[C-0-1] MUST maintain compatibility with existing applications, even when SELinux or any
other security features are implemented below the Android framework.
[C-0-2] MUST NOT have a visible user interface when a security violation is detected and
successfully blocked by the security feature implemented below the Android framework,
but MAY have a visible user interface when an unblocked security violation occurs
resulting in a successful exploit.
[C-0-3] MUST NOT make SELinux or any other security features implemented below the
Android framework configurable to the user or app developer.
[C-0-4] MUST NOT allow an application that can affect another application through an API
(such as a Device Administration API) to configure a policy that breaks compatibility.
[C-0-5] MUST split the media framework into multiple processes so that it is possible to
more narrowly grant access for each process as described in the Android Open Source
Project site.
[C-0-6] MUST implement a kernel application sandboxing mechanism which allows filtering
of system calls using a configurable policy from multithreaded programs. The upstream
Android Open Source Project meets this requirement through enabling the seccomp-BPF
with threadgroup synchronization (TSYNC) as described in the Kernel Configuration
section of source.android.com .

Kernel integrity and self-protection features are integral to Android security. Device implementations:

[C-0-7] MUST implement kernel stack buffer overflow protections (e.g.
CONFIG_CC_STACKPROTECTOR_STRONG).
[C-0-8] MUST implement strict kernel memory protections where executable code is read-
only, read-only data is non-executable and non-writable, and writable data is non-
executable (e.g. CONFIG_DEBUG_RODATA or CONFIG_STRICT_KERNEL_RWX).
[SR] STRONGLY RECOMMENDED to keep kernel data which is written only during
initialization marked read-only after initialization (e.g. __ro_after_init).
[SR} STRONGLY RECOMMENDED to implement static and dynamic object size bounds
checking of copies between user-space and kernel-space (e.g.

Page 111 of 122

http://en.wikipedia.org/wiki/Short_code
https://source.android.com/devices/media/framework-hardening.html#arch_changes
http://source.android.com/devices/tech/config/kernel.html#Seccomp-BPF-TSYNC

CONFIG_HARDENED_USERCOPY).
[SR] STRONGLY RECOMMENDED to never execute user-space memory when running in
the kernel (e.g. hardware PXN, or emulated via CONFIG_CPU_SW_DOMAIN_PAN or
CONFIG_ARM64_SW_TTBR0_PAN).
[SR] STRONGLY RECOMMENDED to never read or write user-space memory in the
kernel outside of normal usercopy access APIs (e.g. hardware PAN, or emulated via
CONFIG_CPU_SW_DOMAIN_PAN or CONFIG_ARM64_SW_TTBR0_PAN).
[SR] STRONGLY RECOMMENDED to randomize the layout of the kernel code and
memory, and to avoid exposures that would compromise the randomization (e.g.
CONFIG_RANDOMIZE_BASE with bootloader entropy via the /chosen/kaslr-seed Device Tree
node or EFI_RNG_PROTOCOL).

If device implementations use a Linux kernel, they:

[C-1-1] MUST implement SELinux.
[C-1-2] MUST set SELinux to global enforcing mode.
[C-1-3] MUST configure all domains in enforcing mode. No permissive mode domains are
allowed, including domains specific to a device/vendor.
[C-1-4] MUST NOT modify, omit, or replace the neverallow rules present within the
system/sepolicy folder provided in the upstream Android Open Source Project (AOSP) and
the policy MUST compile with all neverallow rules present, for both AOSP SELinux
domains as well as device/vendor specific domains.
SHOULD retain the default SELinux policy provided in the system/sepolicy folder of the
upstream Android Open Source Project and only further add to this policy for their own
device-specific configuration.

If device implementations use kernel other than Linux, they:

[C-2-1] MUST use an mandatory access control system that is equivalent to SELinux.

9.8. Privacy

9.8.1. Usage History

Android stores the history of the user's choices and manages such history by UsageStatsManager .
Device implementations:

[C-1-1] MUST keep a reasonable retention period of such user history.
[SR] Are STRONGLY RECOMMENDED to keep the 14 days retention period as
configured by default in the AOSP implementation.

9.8.2. Recording

If device implementations include functionality in the system that captures the contents displayed on
the screen and/or records the audio stream played on the device, they:

[C-1-1] MUST have an ongoing notification to the user whenever this functionality is
enabled and actively capturing/recording.

If device implementations include a component enabled out-of-box, capable of recording ambient
audio to infer useful information about user’s context, they:

[C-2-1] MUST NOT store in persistent on-device storage or transmit off the device the

Page 112 of 122

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/devicetree/bindings/chosen.txt
https://docs.microsoft.com/en-us/windows-hardware/drivers/bringup/efi-rng-protocol
https://developer.android.com/reference/android/app/usage/UsageStatsManager.html

recorded raw audio or any format that can be converted back into the original audio or a
near facsimile, except with explicit user consent.

9.8.3. Connectivity

If device implementations have a USB port with USB peripheral mode support, they:

[C-1-1] MUST present a user interface asking for the user's consent before allowing
access to the contents of the shared storage over the USB port.

9.8.4. Network Traffic

Device implementations:

[C-0-1] MUST preinstall the same root certificates for the system-trusted Certificate
Authority (CA) store as provided in the upstream Android Open Source Project.
[C-0-2] MUST ship with an empty user root CA store.
[C-0-3] MUST display a warning to the user indicating the network traffic may be
monitored, when a user root CA is added.

If device traffic is routed through a VPN, device implementations:

[C-1-1] MUST display a warning to the user indicating either:
That network traffic may be monitored.
That network traffic is being routed through the specific VPN application
providing the VPN.

If device implementations have a mechanism, enabled out-of-box by default, that routes network data
traffic through a proxy server or VPN gateway (for example, preloading a VPN service with
android.permission.CONTROL_VPN granted), they:

[C-2-1] MUST ask for the user's consent before enabling that mechanism, unless that VPN
is enabled by the Device Policy Controller via the
DevicePolicyManager.setAlwaysOnVpnPackage() , in which case the user does not need to
provide a separate consent, but MUST only be notified.

If device implementations implement a user affordance to toggle on the "always-on VPN" function of a
3rd-party VPN app, they:

[C-3-1] MUST disable this user affordance for apps that do not support always-on VPN
service in the AndroidManifest.xml file via setting the
SERVICE_META_DATA_SUPPORTS_ALWAYS_ON attribute to false .

9.9. Data Storage Encryption

If device implementations support a secure lock screen as described in section 9.11.1 , they:

[C-1-1] MUST support data storage encryption of the application private data (/data
partition), as well as the application shared storage partition (/sdcard partition) if it is a
permanent, non-removable part of the device.

If device implementations support a secure lock screen as described in section 9.11.1 and support
data storage encryption with Advanced Encryption Standard (AES) crypto performance above

Page 113 of 122

https://source.android.com/security/overview/app-security.html#certificate-authorities
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setAlwaysOnVpnPackage%28android.content.ComponentName, java.lang.String, boolean%29
https://developer.android.com/reference/android/net/VpnService.html#SERVICE_META_DATA_SUPPORTS_ALWAYS_ON

50MiB/sec, they:

[C-2-1] MUST enable the data storage encryption by default at the time the user has
completed the out-of-box setup experience. If device implementations are already
launched on an earlier Android version with encryption disabled by default, such a device
cannot meet the requirement through a system software update and thus MAY be
exempted.

SHOULD meet the above data storage encryption requirement via implementing File
Based Encryption (FBE).

9.9.1. Direct Boot

Device implementations:

[C-0-1] MUST implement the Direct Boot mode APIs even if they do not support Storage
Encryption.

[C-0-2] The ACTION_LOCKED_BOOT_COMPLETED and ACTION_USER_UNLOCKED
Intents MUST still be broadcast to signal Direct Boot aware applications that Device
Encrypted (DE) and Credential Encrypted (CE) storage locations are available for user.

9.9.2. File Based Encryption

If device implementations support FBE, they:

[C-1-1] MUST boot up without challenging the user for credentials and allow Direct Boot
aware apps to access to the Device Encrypted (DE) storage after the
ACTION_LOCKED_BOOT_COMPLETED message is broadcasted.
[C-1-2] MUST only allow access to Credential Encrypted (CE) storage after the user has
unlocked the device by supplying their credentials (eg. passcode, pin, pattern or
fingerprint) and the ACTION_USER_UNLOCKED message is broadcasted.
[C-1-3] MUST NOT offer any method to unlock the CE protected storage without the user-
supplied credentials.
[C-1-4] MUST support Verified Boot and ensure that DE keys are cryptographically bound
to the device's hardware root of trust.
[C-1-5] MUST support encrypting file contents using AES with a key length of 256-bits in
XTS mode.

[C-1-6] MUST support encrypting file name using AES with a key length of 256-bits in
CBC-CTS mode.

The keys protecting CE and DE storage areas:

[C-1-7] MUST be cryptographically bound to a hardware-backed Keystore.
[C-1-8] CE keys MUST be bound to a user's lock screen credentials.
[C-1-9] CE keys MUST be bound to a default passcode when the user has not specified
lock screen credentials.

[C-1-10] MUST be unique and distinct, in other words no user's CE or DE key matches any
other user's CE or DE keys.

SHOULD make preloaded essential apps (e.g. Alarm, Phone, Messenger) Direct Boot
aware.
MAY support alternative ciphers, key lengths and modes for file content and file name
encryption, but MUST use the mandatorily supported ciphers, key lengths and modes by
default.

Page 114 of 122

https://source.android.com/security/encryption/file-based.html
http://developer.android.com/preview/features/direct-boot.html
https://developer.android.com/reference/android/content/Intent.html#ACTION_LOCKED_BOOT_COMPLETED
https://developer.android.com/reference/android/content/Intent.html#ACTION_USER_UNLOCKED

The upstream Android Open Source project provides a preferred implementation of this feature based
on the Linux kernel ext4 encryption feature.

9.9.3. Full Disk Encryption

If device implementations support full disk encryption (FDE), they:

[C-1-1] MUST use AES with a key of 128-bits (or greater) and a mode designed for
storage (for example, AES-XTS, AES-CBC-ESSIV).
[C-1-2] MUST use a default passcode to wrap the encryption key and MUST NOT write
the encryption key to storage at any time without being encrypted.
[C-1-3] MUST AES encrypt the encryption key by default unless the user explicitly opts
out, except when it is in active use, with the lock screen credentials stretched using a slow
stretching algorithm (e.g. PBKDF2 or scrypt).
[C-1-4] The above default password stretching algorithm MUST be cryptographically
bound to that keystore when the user has not specified a lock screen credentials or has
disabled use of the passcode for encryption and the device provides a hardware-backed
keystore.
[C-1-5] MUST NOT send encryption key off the the device (even when wrapped with the
user passcode and/or hardware bound key).

The upstream Android Open Source project provides a preferred implementation of this feature, based
on the Linux kernel feature dm-crypt.

9.10. Device Integrity

The following requirements ensures there is transparancy to the status of the device integrity. Device
implementations:

[C-0-1] MUST correctly report through the System API method
PersistentDataBlockManager.getFlashLockState() whether their bootloader state permits
flashing of the system image. The FLASH_LOCK_UNKNOWN state is reserved for device
implementations upgrading from an earlier version of Android where this new system API
method did not exist.

Verified boot is a feature that guarantees the integrity of the device software. If a device
implementation supports the feature, it:

[C-1-1] MUST declare the platform feature flag android.software.verified_boot .
[C-1-2] MUST perform verification on every boot sequence.
[C-1-3] MUST start verification from an immutable hardware key that is the root of trust
and go all the way up to the system partition.
[C-1-4] MUST implement each stage of verification to check the integrity and authenticity of
all the bytes in the next stage before executing the code in the next stage.
[C-1-5] MUST use verification algorithms as strong as current recommendations from
NIST for hashing algorithms (SHA-256) and public key sizes (RSA-2048).
[C-1-6] MUST NOT allow boot to complete when system verification fails, unless the user
consents to attempt booting anyway, in which case the data from any non-verified storage
blocks MUST not be used.
[C-1-7] MUST NOT allow verified partitions on the device to be modified unless the user
has explicitly unlocked the boot loader.
[SR] If there are multiple discrete chips in the device (e.g. radio, specialized image

Page 115 of 122

http://source.android.com/devices/tech/security/encryption/index.html

processor), the boot process of each of those chips is STRONGLY RECOMMENDED to
verify every stage upon booting.
[SR] STRONGLY RECOMMENDED to use tamper-evident storage: for when the
bootloader is unlocked. Tamper-evident storage means that the boot loader can detect if
the storage has been tampered with from inside the HLOS (High Level Operating System).
[SR] STRONGLY RECOMMENDED to prompt the user, while using the device, and
require physical confirmation before allowing a transition from boot loader locked mode to
boot loader unlocked mode.
[SR] STRONGLY RECOMMENDED to implement rollback protection for the HLOS (e.g.
boot, system partitions) and to use tamper-evident storage for storing the metadata used
for determining the minimum allowable OS version.
SHOULD implement rollback protection for any component with persistent firmware (e.g.
modem, camera) and SHOULD use tamper-evident storage for storing the metadata used
for determining the minimum allowable version.

The upstream Android Open Source Project provides a preferred implementation of this feature in the
external/avb/ repository, which can be integrated into the boot loader used for loading Android.
If device implementations report the feature flag android.hardware.ram.normal , they:

[C-2-1] MUST support verified boot for device integrity.

If a device implementation is already launched without supporting verified boot on an earlier version of
Android, such a device can not add support for this feature with a system software update and thus
are exempted from the requirement.

9.11. Keys and Credentials

The Android Keystore System allows app developers to store cryptographic keys in a container and
use them in cryptographic operations through the KeyChain API or the Keystore API . Device
implementations:

[C-0-1] MUST at least allow more than 8,192 keys to be imported.
[C-0-2] The lock screen authentication MUST rate-limit attempts and MUST have an
exponential backoff algorithm. Beyond 150 failed attempts, the delay MUST be at least 24
hours per attempt.
SHOULD not limit the number of keys that can be generated

When the device implementation supports a secure lock screen, it:

[C-1-1] MUST back up the keystore implementation with secure hardware.
[C-1-2] MUST have implementations of RSA, AES, ECDSA and HMAC cryptographic
algorithms and MD5, SHA1, and SHA-2 family hash functions to properly support the
Android Keystore system's supported algorithms in an area that is securely isolated from
the code running on the kernel and above. Secure isolation MUST block all potential
mechanisms by which kernel or userspace code might access the internal state of the
isolated environment, including DMA. The upstream Android Open Source Project (AOSP)
meets this requirement by using the Trusty implementation, but another ARM TrustZone-
based solution or a third-party reviewed secure implementation of a proper hypervisor-
based isolation are alternative options.
[C-1-3] MUST perform the lock screen authentication in the isolated execution environment
and only when successful, allow the authentication-bound keys to be used. Lock screen
credentials MUST be stored in a way that allows only the isolated execution environment to
perform lock screen authentication. The upstream Android Open Source Project provides

Page 116 of 122

http://android.googlesource.com/platform/external/avb/
https://developer.android.com/reference/android/content/pm/PackageManager.html#FEATURE_RAM_NORMAL
https://developer.android.com/training/articles/keystore.html
https://developer.android.com/reference/android/security/KeyChain.html
https://developer.android.com/reference/java/security/KeyStore.html
https://source.android.com/security/trusty/

the Gatekeeper Hardware Abstraction Layer (HAL) and Trusty, which can be used to
satisfy this requirement.
[C-1-4] MUST support key attestation where the attestation signing key is protected by
secure hardware and signing is performed in secure hardware. The attestation signing
keys MUST be shared across large enough number of devices to prevent the keys from
being used as device identifiers. One way of meeting this requirement is to share the same
attestation key unless at least 100,000 units of a given SKU are produced. If more than
100,000 units of an SKU are produced, a different key MAY be used for each 100,000
units.

Note that if a device implementation is already launched on an earlier Android version, such a device
is exempted from the requirement to have a hardware-backed keystore, unless it declares the
android.hardware.fingerprint feature which requires a hardware-backed keystore.

9.11.1. Secure Lock Screen

If device implementations have a secure lock screen and include one or more trust agent, which
implements the TrustAgentService System API, then they:

[C-1-1] MUST indicate the user in the Settings and Lock screen user interface of situations
where either the screen auto-lock is deferred or the screen lock can be unlocked by the
trust agent. The AOSP meets the requirement by showing a text description for the
"Automatically lock setting" and "Power button instantly locks setting" menus and a
distinguishable icon on the lock screen.
[C-1-2] MUST respect and fully implement all trust agent APIs in the DevicePolicyManager
class, such as the KEYGUARD_DISABLE_TRUST_AGENTS constant.
[C-1-3] MUST NOT fully implement the TrustAgentService.addEscrowToken() function on a
device that is used as the primary personal device (e.g. handheld) but MAY fully
implement the function on device implementations typically shared.
[C-1-4] MUST encrypt the tokens added by TrustAgentService.addEscrowToken() before
storing them on the device.
[C-1-5] MUST NOT store the encryption key on the device.
[C-1-6] MUST inform the user about the security implications before enabling the escrow
token to decrypt the data storage.

If device implementations add or modify the authentication methods to unlock the lock screen, then for
such an authentication method to be treated as a secure way to lock the screen, they:

[C-2-1] MUST be the user authentication method as described in Requiring User
Authentication For Key Use .
[C-2-2] MUST unlock all keys for a third-party developer app to use when the user unlocks
the secure lock screen. For example, all keys MUST be available for a third-party
developer app through relevant APIs, such as createConfirmDeviceCredentialIntent and
setUserAuthenticationRequired .

If device implementations add or modify the authentication methods to unlock the lock screen if based
on a known secret then for such an authentication method to be treated as a secure way to lock the
screen, they:

[C-3-1] The entropy of the shortest allowed length of inputs MUST be greater than 10 bits.
[C-3-2] The maximum entropy of all possible inputs MUST be greater than 18 bits.
[C-3-3] MUST not replace any of the existing authentication methods (PIN,pattern,
password) implemented and provided in AOSP.

Page 117 of 122

http://source.android.com/devices/tech/security/authentication/gatekeeper.html
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD&lowbarDISABLE&lowbarTRUST&lowbarAGENTS
https://developer.android.com/training/articles/keystore.html#UserAuthentication
https://developer.android.com/reference/android/app/KeyguardManager.html#createConfirmDeviceCredentialIntent%28java.lang.CharSequence, java.lang.CharSequence%29
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder.html#setUserAuthenticationRequired%28boolean%29

[C-3-4] MUST be disabled when the Device Policy Controller (DPC) application has set the
password quality policy via the DevicePolicyManager.setPasswordQuality() method with a
more restrictive quality constant than PASSWORD_QUALITY_SOMETHING .

If device implementations add or modify the authentication methods to unlock the lock screen if based
on a physical token or the location, then for such an authentication method to be treated as a secure
way to lock the screen, they:

[C-4-1] MUST have a fall-back mechanism to use one of the primary authentication
methods which is based on a known secret and meets the requirements to be treated as a
secure lock screen.
[C-4-2] MUST be disabled and only allow the primary authentication to unlock the screen
when the Device Policy Controller (DPC) application has set the policy with either the
DevicePolicyManager.setKeyguardDisabledFeatures(KEYGUARD_DISABLE_TRUST_AGENTS)
method or the DevicePolicyManager.setPasswordQuality() method with a more restrictive
quality constant than PASSWORD_QUALITY_UNSPECIFIED .
[C-4-3] The user MUST be challenged for the primary authentication (e.g.PIN, pattern,
password) at least once every 72 hours or less.

If device implementations add or modify the authentication methods to unlock the lock screen based
on biometrics, then for such an authentication method to be treated as a secure way to lock the
screen, they:

[C-5-1] MUST have a fall-back mechanism to use one of the primary authentication
methods which is based on a known secret and meets the requirements to be treated as a
secure lock screen.
[C-5-2] MUST be disabled and only allow the primary authentication to unlock the screen
when the Device Policy Controller (DPC) application has set the keguard feature policy by
calling the method
DevicePolicyManager.setKeyguardDisabledFeatures(KEYGUARD_DISABLE_FINGERPRINT) .
[C-5-3] MUST have a false acceptance rate that is equal or stronger than what is required
for a fingerprint sensor as described in section 7.3.10, or otherwise MUST be disabled and
only allow the primary authentication to unlock the screen when the Device Policy
Controller (DPC) application has set the password quality policy via the
DevicePolicyManager.setPasswordQuality() method with a more restrictive quality constant
than PASSWORD_QUALITY_BIOMETRIC_WEAK .
[SR] Are STRONGLY RECOMMENDED to have spoof and imposter acceptance rates that
are equal to or stronger than what is required for a fingerprint sensor as described in
section 7.3.10.

If the spoof and imposter acceptance rates are not equal to or stronger than what is required for a
fingerprint sensor as described in section 7.3.10 and the Device Policy Controller (DPC) application
has set the password quality policy via the DevicePolicyManager.setPasswordQuality() method with a
more restrictive quality constant than PASSWORD_QUALITY_BIOMETRIC_WEAK , then:

[C-6-1] MUST disable these biometric methods and allow only the primary authentication
to unlock the screen.
[C-6-2] MUST challenge the user for the primary authentication (e.g.PIN, pattern,
password) at least once every 72 hours or less.

If device implementations add or modify the authentication methods to unlock the lock screen and if
such an authentication method will be used to unlock the keyguard, but will not be treated as a secure
lock screen, then they:

Page 118 of 122

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordQuality%28android.content.ComponentName, int%29
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setKeyguardDisabledFeatures%28android.content.ComponentName, int%29
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordQuality%28android.content.ComponentName, int%29
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setKeyguardDisabledFeatures%28android.content.ComponentName, int%29
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordQuality%28android.content.ComponentName, int%29
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordQuality%28android.content.ComponentName, int%29

[C-7-1] MUST return false for both the KeyguardManager.isKeyguardSecure() and the
KeyguardManager.isDeviceSecure() methods.
[C-7-2] MUST be disabled when the Device Policy Controller (DPC) application has set the
password quality policy via the DevicePolicyManager.setPasswordQuality() method with a
more restrictive quality constant than PASSWORD_QUALITY_UNSPECIFIED .
[C-7-3] MUST NOT reset the password expiration timers set by
DevicePolicyManager.setPasswordExpirationTimeout() .
[C-7-4] MUST NOT authenticate access to keystores if the application has called
KeyGenParameterSpec.Builder.setUserAuthenticationRequired(true)).

9.12. Data Deletion

All device implementations:

[C-0-1] MUST provide users a mechanism to perform a "Factory Data Reset".
[C-0-2] MUST delete all user-generated data. That is, all data except for the following:

The system image
Any operating system files required by the system image

[C-0-3] MUST delete the data in such a way that will satisfy relevant industry standards
such as NIST SP800-88.
[C-0-4] MUST trigger the above "Factory Data Reset" process when the
DevicePolicyManager.wipeData() API is called by the primary user's Device Policy Controller
app.
MAY provide a fast data wipe option that conducts only a logical data erase.

9.13. Safe Boot Mode

Android provides Safe Boot Mode, which allows users to boot up into a mode where only preinstalled
system apps are allowed to run and all third-party apps are disabled. This mode, known as "Safe Boot
Mode", provides the user the capability to uninstall potentially harmful third-party apps.
Device implementations are:

[SR] STRONGLY RECOMMENDED to implement Safe Boot Mode.

If device implementations implement Safe Boot Mode, they:

[C-1-1] MUST provide the user an option to enter Safe Boot Mode in such a way that is
uninterruptible from third-party apps installed on the device, except when the third-party
app is a Device Policy Controller and has set the UserManager.DISALLOW_SAFE_BOOT
flag as true.

[C-1-2] MUST provide the user the capability to uninstall any third-party apps within Safe
Mode.

SHOULD provide the user an option to enter Safe Boot Mode from the boot menu using a
workflow that is different from that of a normal boot.

9.14. Automotive Vehicle System Isolation

Android Automotive devices are expected to exchange data with critical vehicle subsystems by using
the vehicle HAL to send and receive messages over vehicle networks such as CAN bus.
The data exchange can be secured by implementing security features below the Android framework
layers to prevent malicious or unintentional interaction with these subsystems.

Page 119 of 122

http://developer.android.com/reference/android/app/KeyguardManager.html#isKeyguardSecure%28%29
https://developer.android.com/reference/android/app/KeyguardManager.html#isDeviceSecure%28%29
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordQuality%28android.content.ComponentName, int%29
http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordExpirationTimeout%28android.content.ComponentName, long%29
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec.Builder.html#setUserAuthenticationRequired%28boolean%29
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#wipeData%28int%29
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_SAFE_BOOT
http://source.android.com/devices/automotive.html

10. Software Compatibility Testing

Device implementations MUST pass all tests described in this section.
However, note that no software test package is fully comprehensive. For this reason, device
implementers are STRONGLY RECOMMENDED to make the minimum number of changes as
possible to the reference and preferred implementation of Android available from the Android Open
Source Project. This will minimize the risk of introducing bugs that create incompatibilities requiring
rework and potential device updates.

10.1. Compatibility Test Suite

Device implementations MUST pass the Android Compatibility Test Suite (CTS) available from the
Android Open Source Project, using the final shipping software on the device. Additionally, device
implementers SHOULD use the reference implementation in the Android Open Source tree as much
as possible, and MUST ensure compatibility in cases of ambiguity in CTS and for any
reimplementations of parts of the reference source code.
The CTS is designed to be run on an actual device. Like any software, the CTS may itself contain
bugs. The CTS will be versioned independently of this Compatibility Definition, and multiple revisions
of the CTS may be released for Android 8.1. Device implementations MUST pass the latest CTS
version available at the time the device software is completed.

10.2. CTS Verifier

Device implementations MUST correctly execute all applicable cases in the CTS Verifier. The CTS
Verifier is included with the Compatibility Test Suite, and is intended to be run by a human operator to
test functionality that cannot be tested by an automated system, such as correct functioning of a
camera and sensors.
The CTS Verifier has tests for many kinds of hardware, including some hardware that is optional.
Device implementations MUST pass all tests for hardware that they possess; for instance, if a device
possesses an accelerometer, it MUST correctly execute the Accelerometer test case in the CTS
Verifier. Test cases for features noted as optional by this Compatibility Definition Document MAY be
skipped or omitted.
Every device and every build MUST correctly run the CTS Verifier, as noted above. However, since
many builds are very similar, device implementers are not expected to explicitly run the CTS Verifier
on builds that differ only in trivial ways. Specifically, device implementations that differ from an
implementation that has passed the CTS Verifier only by the set of included locales, branding, etc.
MAY omit the CTS Verifier test.

11. Updatable Software

Device implementations MUST include a mechanism to replace the entirety of the system software.
The mechanism need not perform “live” upgrades—that is, a device restart MAY be required.
Any method can be used, provided that it can replace the entirety of the software preinstalled on the
device. For instance, any of the following approaches will satisfy this requirement:

“Over-the-air (OTA)” downloads with offline update via reboot.
“Tethered” updates over USB from a host PC.
“Offline” updates via a reboot and update from a file on removable storage.

However, if the device implementation includes support for an unmetered data connection such as
802.11 or Bluetooth PAN (Personal Area Network) profile, it MUST support OTA downloads with

Page 120 of 122

http://source.android.com/compatibility/index.html

offline update via reboot.
The update mechanism used MUST support updates without wiping user data. That is, the update
mechanism MUST preserve application private data and application shared data. Note that the
upstream Android software includes an update mechanism that satisfies this requirement.
For device implementations that are launching with Android 6.0 and later, the update mechanism
SHOULD support verifying that the system image is binary identical to expected result following an
OTA. The block-based OTA implementation in the upstream Android Open Source Project, added
since Android 5.1, satisfies this requirement.
Also, device implementations SHOULD support A/B system updates . The AOSP implements this
feature using the boot control HAL.
If an error is found in a device implementation after it has been released but within its reasonable
product lifetime that is determined in consultation with the Android Compatibility Team to affect the
compatibility of third-party applications, the device implementer MUST correct the error via a software
update available that can be applied per the mechanism just described.
Android includes features that allow the Device Owner app (if present) to control the installation of
system updates. To facilitate this, the system update subsystem for devices that report
android.software.device_admin MUST implement the behavior described in the SystemUpdatePolicy
class.

12. Document Changelog

For a summary of changes to the Compatibility Definition in this release:

Document changelog

For a summary of changes to individuals sections:

1. Introduction
2. Device Types
3. Software
4. Application Packaging
5. Multimedia
6. Developer Tools and Options
7. Hardware Compatibility
8. Performance and Power
9. Security Model

10. Software Compatibility Testing
11. Updatable Software
12. Document Changelog
13. Contact Us

12.1. Changelog Viewing Tips

Changes are marked as follows:

CDD
Substantive changes to the compatibility requirements.

Docs
Cosmetic or build related changes.

Page 121 of 122

https://source.android.com/devices/tech/ota/ab_updates.html
http://developer.android.com/reference/android/app/admin/SystemUpdatePolicy.html
https://android.googlesource.com/platform/compatibility/cdd/+log/oreo-mr1-dev/?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/oreo-mr1-dev/1_introduction?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/oreo-mr1-dev/2_device_types?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/oreo-mr1-dev/3_software?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/oreo-mr1-dev/4_application-packaging?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/oreo-mr1-dev/5_multimedia?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/oreo-mr1-dev/6_dev-tools-and-options?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/oreo-mr1-dev/7_hardware-compatibility?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/oreo-mr1-dev/8_performance-and-power?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/oreo-mr1-dev/9_security-model?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/oreo-mr1-dev/10_software-compatibility-testing?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/oreo-mr1-dev/11_updatable-software?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/oreo-mr1-dev/12_document-changelog?pretty=full&no-merges
https://android.googlesource.com/platform/compatibility/cdd/+log/oreo-mr1-dev/13_contact-us?pretty=full&no-merges

For best viewing, append the pretty=full and no-merges URL parameters to your changelog URLs.

13. Contact Us

You can join the android-compatibility forum and ask for clarifications or bring up any issues that you
think the document does not cover.

Page 122 of 122

https://groups.google.com/forum/#!forum/android-compatibility

	Table of Contents
	1. Introduction
	1.1 Document Structure
	1.1.1. Requirements by Device Type
	1.1.2. Requirement ID

	2. Device Types
	2.1 Device Configurations
	2.2. Handheld Requirements
	2.2.1. Hardware
	2.2.2. Multimedia
	2.2.3. Software
	2.2.4. Performance and Power
	2.2.5. Security Model

	2.3. Television Requirements
	2.3.1. Hardware
	2.3.2. Multimedia
	2.3.3. Software
	2.2.4. Performance and Power

	2.4. Watch Requirements
	2.4.1. Hardware
	2.4.2. Multimedia
	2.4.3. Software

	2.5. Automotive Requirements
	2.5.1. Hardware
	2.5.2. Multimedia
	2.5.3. Software
	2.2.4. Performance and Power
	2.2.5. Security Model

	2.6. Tablet Requirements
	2.4.1. Hardware

	3. Software
	3.1. Managed API Compatibility
	3.1.1. Android Extensions
	3.2. Soft API Compatibility
	3.2.1. Permissions
	3.2.2. Build Parameters
	3.2.3. Intent Compatibility
	3.2.3.1. Core Application Intents
	3.2.3.2. Intent Resolution
	3.2.3.3. Intent Namespaces
	3.2.3.4. Broadcast Intents
	3.2.3.5. Default App Settings

	3.2.4. Activities on secondary displays

	3.3. Native API Compatibility
	3.3.1. Application Binary Interfaces
	3.3.2. 32-bit ARM Native Code Compatibility

	3.4. Web Compatibility
	3.4.1. WebView Compatibility
	3.4.2. Browser Compatibility

	3.5. API Behavioral Compatibility
	3.6. API Namespaces
	3.7. Runtime Compatibility
	3.8. User Interface Compatibility
	3.8.1. Launcher (Home Screen)
	3.8.2. Widgets
	3.8.3. Notifications
	3.8.3.1. Presentation of Notifications
	3.8.3.2. Notification Listener Service
	3.8.3.3. DND (Do not Disturb)

	3.8.4. Search
	3.8.5. Alerts and Toasts
	3.8.6. Themes
	3.8.7. Live Wallpapers
	3.8.8. Activity Switching
	3.8.9. Input Management
	3.8.10. Lock Screen Media Control
	3.8.11. Screen savers (previously Dreams)
	3.8.12. Location
	3.8.13. Unicode and Font
	3.8.14. Multi-windows

	3.9. Device Administration
	3.9.1 Device Provisioning
	3.9.1.1 Device owner provisioning
	3.9.1.2 Managed profile provisioning

	3.9.2 Managed Profile Support
	3.10. Accessibility
	3.11. Text-to-Speech
	3.12. TV Input Framework
	3.12.1. TV App
	3.12.1.1. Electronic Program Guide
	3.12.1.2. Navigation
	3.12.1.3. TV input app linking
	3.12.1.4. Time shifting
	3.12.1.5. TV recording

	3.13. Quick Settings
	3.14. Media UI
	3.15. Instant Apps
	3.16. Companion Device Pairing

	4. Application Packaging Compatibility
	5. Multimedia Compatibility
	5.1. Media Codecs
	5.1.1. Audio Encoding
	5.1.2. Audio Decoding
	5.1.3. Audio Codecs Details
	5.1.4. Image Encoding
	5.1.5. Image Decoding
	5.1.6. Image Codecs Details
	5.1.7. Video Codecs
	5.1.8. Video Codecs List

	5.2. Video Encoding
	5.2.1. H.263
	5.2.2. H-264
	5.2.3. VP8
	5.2.4. VP9

	5.3. Video Decoding
	5.3.1. MPEG-2
	5.3.2. H.263
	5.3.3. MPEG-4
	5.3.4. H.264
	5.3.5. H.265 (HEVC)
	5.3.6. VP8
	5.3.7. VP9

	5.4. Audio Recording
	5.4.1. Raw Audio Capture
	5.4.2. Capture for Voice Recognition
	5.4.3. Capture for Rerouting of Playback

	5.5. Audio Playback
	5.5.1. Raw Audio Playback
	5.5.2. Audio Effects
	5.5.3. Audio Output Volume

	5.6. Audio Latency
	5.7. Network Protocols
	5.8. Secure Media
	5.9. Musical Instrument Digital Interface (MIDI)
	5.10. Professional Audio
	5.11. Capture for Unprocessed

	6. Developer Tools and Options Compatibility
	6.1. Developer Tools
	6.2. Developer Options

	7. Hardware Compatibility
	7.1. Display and Graphics
	7.1.1. Screen Configuration
	7.1.1.1. Screen Size
	7.1.1.2. Screen Aspect Ratio
	7.1.1.3. Screen Density

	7.1.2. Display Metrics
	7.1.3. Screen Orientation
	7.1.4. 2D and 3D Graphics Acceleration
	7.1.4.1 OpenGL ES
	7.1.4.2 Vulkan
	7.1.4.3 RenderScript
	7.1.4.4 2D Graphics Acceleration
	7.1.4.5 Wide-gamut Displays

	7.1.5. Legacy Application Compatibility Mode
	7.1.6. Screen Technology
	7.1.7. Secondary Displays

	7.2. Input Devices
	7.2.1. Keyboard
	7.2.2. Non-touch Navigation
	7.2.3. Navigation Keys
	7.2.4. Touchscreen Input
	7.2.5. Fake Touch Input
	7.2.6. Game Controller Support
	7.2.6.1. Button Mappings

	7.2.7. Remote Control

	7.3. Sensors
	7.3.1. Accelerometer
	7.3.2. Magnetometer
	7.3.3. GPS
	7.3.4. Gyroscope
	7.3.5. Barometer
	7.3.6. Thermometer
	7.3.7. Photometer
	7.3.8. Proximity Sensor
	7.3.9. High Fidelity Sensors
	7.3.10. Fingerprint Sensor
	7.3.11. Android Automotive-only sensors
	7.3.11.1. Current Gear
	7.3.11.2. Day Night Mode
	7.3.11.3. Driving Status
	7.3.11.4. Wheel Speed

	7.3.12. Pose Sensor
	7.4. Data Connectivity
	7.4.1. Telephony
	7.4.1.1. Number Blocking Compatibility
	7.4.1.2. Telecom API

	7.4.2. IEEE 802.11 (Wi-Fi)
	7.4.2.1. Wi-Fi Direct
	7.4.2.2. Wi-Fi Tunneled Direct Link Setup
	7.4.2.3. Wi-Fi Aware
	7.4.2.4. Wi-Fi Passpoint

	7.4.3. Bluetooth
	7.4.4. Near-Field Communications
	7.4.5. Minimum Network Capability
	7.4.6. Sync Settings
	7.4.7. Data Saver

	7.5. Cameras
	7.5.1. Rear-Facing Camera
	7.5.2. Front-Facing Camera
	7.5.3. External Camera
	7.5.4. Camera API Behavior
	7.5.5. Camera Orientation

	7.6. Memory and Storage
	7.6.1. Minimum Memory and Storage
	7.6.2. Application Shared Storage
	7.6.3. Adoptable Storage

	7.7. USB
	7.7.1. USB peripheral mode
	7.7.2. USB host mode

	7.8. Audio
	7.8.1. Microphone
	7.8.2. Audio Output
	7.8.2.1. Analog Audio Ports

	7.8.3. Near-Ultrasound

	7.9. Virtual Reality
	7.9.1. Virtual Reality Mode
	7.9.2. Virtual Reality High Performance

	8. Performance and Power
	8.1. User Experience Consistency
	8.2. File I/O Access Performance
	8.3. Power-Saving Modes
	8.4. Power Consumption Accounting
	8.5. Consistent Performance

	9. Security Model Compatibility
	9.1. Permissions
	9.2. UID and Process Isolation
	9.3. Filesystem Permissions
	9.4. Alternate Execution Environments
	9.5. Multi-User Support
	9.6. Premium SMS Warning
	9.7. Kernel Security Features
	9.8. Privacy
	9.8.1. Usage History
	9.8.2. Recording
	9.8.3. Connectivity
	9.8.4. Network Traffic

	9.9. Data Storage Encryption
	9.9.1. Direct Boot
	9.9.2. File Based Encryption
	9.9.3. Full Disk Encryption

	9.10. Device Integrity
	9.11. Keys and Credentials
	9.11.1. Secure Lock Screen

	9.12. Data Deletion
	9.13. Safe Boot Mode
	9.14. Automotive Vehicle System Isolation

	10. Software Compatibility Testing
	10.1. Compatibility Test Suite
	10.2. CTS Verifier

	11. Updatable Software
	12. Document Changelog
	12.1. Changelog Viewing Tips

	13. Contact Us

